首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In an effort to identify cell type specific proteins from brain, we have compared proteins of the cell nucleus from two brain cell types. Using a bulk isolation procedure, we fractionated neurons and astrocytes from adult rat brain. In addition, primary cultures of astrocytes were prepared from one-day old rats. Nuclei from these cells and C-6 glioma cell cultures were isolated and the resulting proteins subjected to two-dimensional gel electrophoresis. Several proteins specific for each cell type were found. While many similarities between bulk brain astrocyte preparations and cultured astrocytes were found, less than pure bulk astrocytes from brain were found to be most similar to those of neurons and not to those from primary cell culture.

The nuclear protein profile of cultured astrocytes differed significantly from that of C-6 cells, indicating the utility of two-dimensional gel analysis for detecting major cell type differences in uniform populations of cells.  相似文献   


2.
The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using pre-cast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, in-gel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.  相似文献   

3.
Proteome analysis of mouse primary astrocytes   总被引:1,自引:0,他引:1  
Astrocytes play a role in energy metabolism, neuronal homeostasis and release of neuronal growth factors and several neurotransmitters. They also relate to a variety of brain diseases and contribute to restore brain dysfunction. Although current research has revealed several roles for astrocytes, knowledge on astrocytic protein expression is limited and a systematic and comprehensive proteome study of astrocytes has not been reported so far. We applied a proteomics technique based on two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF) and unambiguously identified 301 spots corresponding to 191 individual proteins in primary mouse astrocytes. The identified proteins were from antioxidant, chaperone, cytoskeleton, nucleic acid binding, signaling, proteasomal, hypothetical and miscellaneous proteins. A reference database is provided and proteins were identified in astrocytes specifically and unambiguously for the first time. A reliable analytical tool independent of antibody availability and specificity along with tentative astrocytic marker proteins is described.  相似文献   

4.
Alzheimer's disease (AD) is one of the disorders caused by protein conformational changes and recent studies have shown that several chaperone proteins are involved in this process. As information of chaperone expression in AD brain is limited, we aimed to study the expressional pattern of chaperones in several brain regions, as this may be essential to understand how folding defects can lead to disease. We studied the concomitant expressional patterns of molecular chaperones in seven brain regions of adults with AD using two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-associated laser desorption ionization mass spectroscopy (MALDI-MS). We unambiguously identified and quantified nine different chaperone proteins. Six chaperone proteins, heat shock protein 60 (HSP 60), HSP 70 RY, heat shock cognate (HSC) 71, alpha crystallin B chain, glucose regulated protein (GRP) 75, and GRP 94 showed aberrant expressional patterns depending on brain region. HSP 70.1, GRP 78 and T-complex 1 (TCP-1) epsilon subunit did not show any significant expressional change. These findings are compatible with neuropathological and biochemical abnormalities in AD brain and this report presents the first approach to quantify nine different chaperones simultaneously at the protein level in individual AD brain regions providing evidence for the relevance of aberrant chaperone expression to AD neuropathology.  相似文献   

5.
Senescence-accelerated prone (SAMP) strain 8 mice suffer an earlier development of cognitive age-related pathologies and a shorter life span than conventional mice. Protein alterations in astrocytes, in addition to those in neurons, may contribute to neurodegenerative damage. We applied proteomics techniques to study cell-specific early markers of brain aging-related degeneration in SAMP8. The two-dimensional protein expression patterns of the SAMP8 neuron and astrocyte cultures were compared with those obtained from senescence-accelerated resistant mouse strain 1 cultures. Differentially expressed spots were identified by matrix-assisted laser desorption/ionization–time of flight peptide map fingerprinting and database search. Proteins belonged to cell pathways of energy metabolism, biosynthesis, cell transduction and signaling, stress response, and the maintenance of cytoskeletal functions. Most of the changes were cell type specific. However, there was a general increase in cell transduction, signaling, and stress-related proteins and a decrease in cytoskeletal proteins. In addition, neurons showed an increased expression of proteins involved in biosynthetic pathways. A number of the protein alterations have been previously reported in the brain tissue proteome of SAMP8, aged brain or Alzheimer's disease brain. Alterations in neuron and astrocyte proteoma indicated that both cell types are involved in the brain degenerative changes of SAMP8 mice. However, network analysis suggests that neuronal changes are more complex and have a greater influence.  相似文献   

6.
The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs),sharing a 5' AGCAGC sequence.These miRNAs have overlapping targets.In order to characterize the expression of miR-15/107 family miRNAs,we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members,and other selected miRNAs,in 11 human tissues obtained at autopsy including the cerebral cortex,frontal cortex,primary visual cortex,thalamus,heart,lung,liver,kidney,spleen,stomach and skeletal muscle.miR-103,miR-195 and miR-497 were expressed at similar levels across various tissues,whereas miR-107 is enriched in brain samples.We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons,astrocytes and microglia,respectively).In primary cultures of rat brain cells,several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS).In addition to mature miRNAs,we also examined the expression of precursors (pri-miRNAs).Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors.In summary,we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.  相似文献   

7.
Neuromodulin (also called GAP43, G50, F1, pp46), a neural-specific calmodulin binding protein, is a major protein kinase C substrate found in developing and regenerating neurons. Here, we report the immunocytochemical characterization of neuromodulin in cultured 0-2A bipotential glial precursor cells obtained from newborn rat brain. Neuromodulin is also present in oligodendrocytes and type 2 astrocytes (stellate-shaped astrocytes), which are both derived from the bipotential glial 0-2A progenitor cells, but is absent of type 1 astrocytes (flat protoplasmic astrocytes). These results support the hypothesis of a common cell lineage for neurons and bipotential 0-2A progenitor cells and suggest that neuromodulin plays a more general role in plasticity during development of the central nervous system. The expression of neuromodulin in secondary cultures of newborn rat oligodendrocytes and its absence in type 1 astrocytes was confirmed by Northern blot analysis of isolated total RNA from these different types of cells using a cDNA probe for the neuromodulin mRNA and by Western blot analysis of the cell extracts using polyclonal antibodies against neuromodulin. The properties of the neuromodulin protein in cultured oligodendrocytes and neuronal cells have been compared. Although neuromodulin in oligodendrocytes is soluble in 2.5% perchloric acid like the neuronal counterpart it migrates essentially as a single protein spot on two-dimensional gel electrophoresis whereas the neuronal antigen can be resolved into at least three distinct protein spots. To obtain precise alignments of the different neuromodulin spots from these two cell types, oligodendrocyte and neuronal cell extracts were mixed together and run on the same two-dimensional gel electrophoresis system. Oligodendroglial neuromodulin migrates with a pI identical to the basic forms of the neuronal protein in isoelectric focusing gel. However, the glial neuromodulin shows a slightly lower mobility in the second dimensional lithium dodecyl sulfate-PAGE than its neuronal counterpart. As measured by 32Pi incorporation, neuromodulin phosphorylation in oligodendrocytes is dramatically increased after short-term phorbol ester treatments, which activate protein kinase C, and is totally inhibited by long-term phorbol ester treatments, which downregulates protein kinase C, thus confirming its probable specific in vivo phosphorylation by protein kinase C. In primary cultures of neuronal cells, two of the three neuromodulin spots were observed to be phosphorylated with an apparent preferential phosphorylation of the more acid forms.  相似文献   

8.
The monoclonal antibody (mAb) neuronal nuclei (NeuN) labels the nuclei of mature neurons in vivo in vertebrates. NeuN has also been used to define post-mitotic neurons or differentiating neuronal precursors in vitro . In this study, we demonstrate that the NeuN mAb labels the nuclei of astrocytes cultured from fetal and adult human, newborn rat, and embryonic mouse brain tissue. A non-neuronal fibroblast cell line (3T3) also displayed NeuN immunoreactivity. We confirmed that NeuN labels neurons but not astrocytes in sections of P10 rat brain. Western blot analysis of NeuN immunoreactive species revealed a distribution of bands in nucleus-enriched fractions derived from the different cell lines that was similar, but not identical to adult rat brain homogenates. We then examined the hypothesis that the glial fibrillary acidic protein/NeuN-double positive population of cells might correspond to neuronal precursors. Although the NeuN-positive astrocytes were proliferating, no evidence of neurogenesis was detected. Furthermore, expression of additional neuronal precursor markers was not detected. Our results indicate that primary astrocytes derived from mouse, rat, and human brain express NeuN. Our findings are consistent with NeuN being a selective marker of neurons in vivo , but indicate that studies utilizing NeuN-immunoreactivity as a definitive marker of post-mitotic neurons in vitro should be interpreted with caution.  相似文献   

9.
A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid β oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca2+ rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.  相似文献   

10.
The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of peripheral cholesterol efflux and plasma high density lipoprotein metabolism. In adult rat brain we found high expression of ABCA1 in neurons in the hypothalamus, thalamus, amygdala, cholinergic basal forebrain, and hippocampus. Large neurons of the cholinergic nucleus basalis together with CA1 and CA3 pyramidal neurons were among the most abundantly immunolabeled neurons. Glia cells were largely negative. Because cholesterol homeostasis may have an essential role in central nervous system function and neurodegeneration, we examined ABCA1 expression and function in different brain cell types using cultures of primary neurons, astrocytes, and microglia isolated from embryonic rat brain. The basal ABCA1 mRNA and protein levels detected in these cell types were increased markedly after exposure to oxysterols and 9-cis-retinoic acid, which are ligands for the nuclear hormone liver X receptors and retinoic X receptors, respectively. Functionally, the increased ABCA1 expression caused by these ligands was followed by elevated apoA-I- and apoE-specific cholesterol efflux in neurons and glia. In non-neuronal and neuronal cells overexpressing a human Swedish variant of amyloid precursor protein, 22R-hydroxycholesterol and 9-cis-retinoic acid induced ABCA1 expression and increased apoA-I-mediated cholesterol efflux consequently decreasing cellular cholesterol content. More importantly, we demonstrated that these ligands alone or in combination with apoA-I caused a substantial reduction in the stability of amyloid precursor protein C-terminal fragments and decreased amyloid beta production. These effects of 22R-hydroxycholesterol may provide a novel strategy to decrease amyloid beta secretion and consequently reduce the amyloid burden in the brain.  相似文献   

11.
12.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Brain development and function are governed by precisely regulated protein expressions in different regions. To date, multiregional brain proteomes have been systematically analyzed only for adult human and mouse brains. To understand the underpinnings of brain development and function, we generated proteomes from six regions of the postnatal brain at three developmental stages of domestic dogs (Canis familiaris), which are special among animals in terms of their remarkable human-like social cognitive abilities. Quantitative analysis of the spatiotemporal proteomes identified region-enriched synapse types at different developmental stages and differential myelination progression in different brain regions. Through integrative analysis of inter-regional expression patterns of orthologous proteins and genome-wide cis-regulatory element frequencies, we found that proteins related with myelination and hippocampus were highly correlated between dog and human but not between mouse and human, although mouse is phylogenetically closer to human. Moreover, the global expression patterns of neurodegenerative disease and autism spectrum disorder–associated proteins in dog brain more resemble human brain than in mouse brain. The high similarity of myelination and hippocampus-related pathways in dog and human at both proteomic and genetic levels may contribute to their shared social cognitive abilities. The inter-regional expression patterns of disease-associated proteins in the brain of different species provide important information to guide mechanistic and translational study using appropriate animal models.  相似文献   

14.
Abstract: We report the isolation, by RT-PCR, of partial cDNAs encoding the rat peroxisome proliferator-activated receptor (PPAR) isoforms PPARα, PPARβ, and PPARγ and the rat retinoid X receptor (RXR) isoforms RXRα, RXRβ, and RXRγ. These cDNAs were used to generate antisense RNA probes to permit analysis, by the highly sensitive and discriminatory RNase protection assay, of the corresponding mRNAs in rat brain regions during development. PPARα, PPARβ, RXRα, and RXRβ mRNAs are ubiquitously present in different brain regions during development, PPARγ mRNA is essentially undetectable, and RXRγ mRNA is principally localised to cortex. We demonstrate, for the first time, the presence of PPAR and RXR mRNAs in primary cultures of neonatal meningeal fibroblasts, cerebellar granule neurons (CGNs), and cortical and cerebellar astrocytes and in primary cultures of adult cortical astrocytes. PPARα, PPARβ, RXRα, and RXRβ mRNAs are present in all cell types, albeit that PPARα and RXRα mRNAs are at levels near the limit of detection in CGNs. PPARγ mRNA is expressed at low levels in most cell types but is present at levels similar to those of PPARα mRNA in adult astrocytes. RXRγ mRNA is present either at low levels, or below the level of detection of the assay, for all cell types studied.  相似文献   

15.
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood–brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.  相似文献   

16.
Proteogenomics is based on the use of customized genome or RNA sequencing databases for interrogation of shotgun proteomics data in search for proteome‐level evidence of genome variations or RNA editing. In this work, the products of adenosine‐to‐inosine RNA editing in human and murine brain proteomes are identified using publicly available brain proteome LC‐MS/MS datasets and an RNA editome database compiled from several sources. After filtering of false‐positive results, 20 and 37 sites of editing in proteins belonging to 14 and 32 genes are identified for murine and human brain proteomes, respectively. Eight sites of editing identified with high spectral counts overlapped between human and mouse brain samples. Some of these sites have been previously reported using orthogonal methods, such as α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) glutamate receptors, CYFIP2, coatomer alpha. Also, differential editing between neurons and microglia is demonstrated in this work for some of the proteins from primary murine brain cell cultures. Because many edited sites are still not characterized functionally at the protein level, the results provide a necessary background for their further analysis in normal and diseased cells and tissues using targeted proteomic approaches.  相似文献   

17.
Monoclonal antibody (MAb) 2H1, raised in mice immunized with membrane fractions from cultured rat pheochromocytoma cells (clonal line PC-12), detects a polypeptide from rat brain and PC-12 cell membranes of 60-65 KD apparent molecular mass. The polypeptide has been localized by immunoelectron microscopy in the rough endoplasmic reticulum (RER) of neurons. By light microscopic immunocytochemistry, several rat tissues and two rat-derived cultured cell types show selective patterns of staining with 2H1. In the central nervous system, the antibody stains neuronal cytoplasm; in the spleen, staining is seen only in certain cells of the marginal zone of the white pulp, and in lymph nodes, in plasma cells, and in areas populated by monocytes and macrophages. Whereas astrocytes and adrenal medullary cells in situ are virtually unstained with 2H1, primary cultures of astrocytes and PC-12 cells, which are derived from adrenal medullary cells, stain intensely with 2H1. The strong staining of cultured astrocytes and PC-12 cells with 2H1 suggests that the levels of the 60-65 KD polypeptide are up-regulated during cell proliferation and growth. Only a few hepatocytes stain with 2H1; intestinal epithelial and pancreatic cells are not stained with 2H1. The organelle-specific antibody 2H1 may prove a useful probe in structural and functional studies of membranes of the rough endoplasmic reticulum in neurons, and in certain cells of the immune system.  相似文献   

18.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   

19.
The occurrence of vimentin, a specific intermediate filament protein, has been studied by immunoflourescence microscopy in tissue of adult and embryonic brain as well as in cell cultures from nervous tissue. By double imminofluorescence labeling, the distribution of vimentin has been compared with that of subunit proteins of other types of intermediate filaments (glial fibrillary acidic [GFA] protein, neurofilament protein, prekeratin) and other cell-type specific markers (fibronectin, tetanus toxin receptor, 04 antigen). In adult brain tissue, vimentin is found not only in fibroblasts and cells of larger blood vessels but also in ependymal cells and astrocytes. In embryonic brain tissue, vimentin is detectable as early as embryonic day 11, the earliest stage tested, and is located in radial fibers spanning the neural tube, in ventricular cells, and in blood vessels. At all stages tested, oligodendrocytes and neurons do not express detectable amounts of vimentin. In primary cultures of early postnatal mouse cerebellum, a coincident location of vimentin and GFA protein is seen in astrocytes, and both types of filament proteins are included in the perinuclear aggregates formed upon exposure of the cells to colcemid. In cerebellar cell cultures of embryonic-day-13 mice, vimentin is seen in various cell types of epithelioid or fibroblastlike morphology but is absent from cells expressing tetanus toxin receptors. Among these embryonic, vimentin-positive cells, a certain cell type reacting neither with tetanus toxin nor with antibodies to fibronectin or GFA protein has been tentatively identified as precursor to more mature astrocytes. The results show that, in the neuroectoderm, vimentin is a specific marker for astrocytes and ependymal cells. It is expressed in the mouse in astrocytes and glial precursors well before the onset of GFA protein expression and might therefore serve as an early marker of glial differentiation. Our results show that vimentin and GFA protein coexist in one cell type not only in primary cultures in vitro but also in the intact tissue in situ.  相似文献   

20.
Regulated secretion requires the formation of a fusion complex consisting of synaptobrevin, syntaxin and SNAP 25. One of these key proteins, synaptobrevin, also complexes with the vesicle protein synaptophysin. The fusion complex and the synaptophysin-synaptobrevin complex are mutually exclusive. Using a combination of immunoprecipitation and crosslinking experiments we report here that the synaptophysin-synaptobrevin interaction in mouse whole brain and defined brain areas is upregulated during neuronal development as previously reported for rat brain. Furthermore the synaptophysin-synaptobrevin complex is also upregulated within 10-12 days of cultivation in mouse hippocampal neurons in primary culture. Besides being constituents of small synaptic vesicles in neurons synaptophysin and synaptobrevin also occur on small synaptic vesicle analogues of neuroendocrine cells. However, the synaptophysin-synaptobrevin complex was not found in neuroendocrine cell lines and more importantly it was also absent in the adrenal gland, the adenohypophysis and the neurohypophysis although the individual proteins could be clearly detected. In the rat pheochromocytoma cell line PC 12 complex formation between synaptophysin and synaptobrevin could be initiated by adult rat brain cytosol. In conclusion, the synaptophysin-synaptobrevin complex is upregulated in neurons in primary culture but is absent in the neuroendocrine cell lines and tissues tested. The complex may provide a reserve pool of synaptobrevin during periods of high synaptic activity. Such a reserve pool probably is less important for more slowly secreting neuroendocrine cells and neurons. The synaptophysin on small synaptic vesicle analogues in these cells appears to resemble the synaptophysin of embryonic synaptic vesicles since complex formation can be induced by adult brain cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号