首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The systematic relationships of the butterfly family Pieridae are poorly understood. Much of our current understanding is based primarily on detailed morphological observations made 50–70 years ago. However, the family and its putative four subfamilies and two tribes, have rarely been subjected to rigorous phylogenetic analysis. Here we present results based on an analysis of molecular characters used to reconstruct the phylogeny of the Pieridae in order to infer higher‐level classification above the generic level and patterns of historical biogeography. Our sample contained 90 taxa representing 74 genera and six subgenera, or 89% of all genera recognized in the family. Three complementary approaches were employed: (1) a combined analysis of a 30 taxon subset for sequences from four gene regions, including elongation factor‐1 alpha (EF‐1α), wingless, cytochrome oxidase subunit I (COI), and 28S (3675 bp, 1031 parsimony‐informative characters), mainly to establish higher‐level relationships, (2) a single‐gene analysis of the 90 taxon data set for sequences from EF‐1α (1066 bp, 364 parsimony‐informative characters), mainly to establish lower‐level relationships, and (3) an all available data analysis of the entire data set for sequences from the four genes, to recover both deep and shallow nodes. Analyses using maximum parsimony, maximum likelihood and Bayesian inference provided similar results. All supported monophyly for the four subfamilies but not for the two tribes, with the Anthocharidini polyphyletic and the Pierini paraphyletic. The combined and all available data analyses support the following relationships among the subfamilies: ((Pseudopontiinae + Dismorphiinae) + (Coliadinae + Pierinae)), corroborating Ehrlich’s 1958 phenetic hypothesis. On the basis of these analyses, and additional morphological and life history evidence, we propose a reclassification of the subfamily Pierinae into two tribes (Anthocharidini s.s., Pierini s.s.) and two informal groups (Colotis group, Leptosia), with the tribe Pierini s.s. subdivided into three subtribes (Appiadina, Pierina, Aporiina) and three genera (Elodina, Dixeia, Belenois) of uncertain status (incertae sedis). The combined and all available data analyses support the following relationships among the Pierinae: (Colotis group + Anthocharidini s.s. + Leptosia + (Elodina + ((Dixeia + Belenois) + Appiadina + Pierina + Aporiina))). Application of a molecular clock calibrated using fossil evidence and semiparametric rate smoothing suggests that divergence between the Pierina and Aporiina occurred no later than the Palaeocene (> 60 Myr). The minimum estimate for the age of the crown‐group of the Pieridae was 112–82 Myr, with a mean of 95 Myr. A historical biogeographical hypothesis is proposed to explain the present‐day distribution of the clade Pseudopontiinae + Dismorphiinae, which argues for an origin of the two subfamilies in western Gondwana (Africa + South America) during the Late Cretaceous. © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society, 2006, 147 , 239–275.  相似文献   

2.
3.
A cladistic biogeographic analysis for the Holarctic and Indo-Chinese regions was undertaken based on seven genera of the tribe Cidariini: Cidaria Treitschke, Thera Stephens, Pennithera Viidalepp, Heterothera Inoue, Callabraxas Butler, Gandaritis Moore and Eulithis Httbner. Smallest coincident ranges of two species recognized 11 endemic areas. The study has two aims: to construct a hierarchical structure of those areas, and to recognize dispersal events. Under two assumptions [widespread taxa mapped (identical as assumption 0) and widespread taxa not mapped (identical as assumption 1)] the 11 endemic areas were mapped with 72 taxa. The best resolved area cladograms under the two assumptions differ in the placement of one endemic area, northern Europe. Area relationships found in this present analysis are congruent with the current landmass configurations: (North America, (Europe, (northern India, (southwestern Asia, (Baikal area, (south China, (Taiwan, (Russian Far East, Japan)))))))). These area cladograms postulate at least three vicariance events: (1) between North America and the Palaearctic; (2) western-eastern Palaearctic; (3) northern India–the rest of Asia. The approach to recognize dispersed taxa by pruning each taxon suggests that most dispersal events occurred in East Asia: from the Baikal area or south China to the Russian Far East; and from the Russian Far East to Japan. Relationships among endemic areas are briefly discussed.  相似文献   

4.
We briefly review the potential history of Madagascar as either a Darwinian or a Wallacean island, summarize the phylogenetic evidence regarding the biogeography of Madagascar spiders, examine the dispersal history of the Madagascar Phyxelididae, and monograph the family in Madagascar. Molecular phylogenetic analyses for 32 Malagasy phyxelidid exemplars, nine confamilial outgroup taxa, and seven other more distant outgroups are performed for three nuclear markers and one mitochondrial genetic marker (28S, 18S, H3 and COI) utilizing Bayesian, maximum‐likelihood and parsimony methods. These analyses suggest that there are 14 species of Phyxelididae that may be recognized from Madagascar, that these may be divided into three genera, and that the Malagasy phyxelidids form a monophyletic group, probably resulting from a single invasion of the island by an ancestor from Africa. Two new genera, ten new species, and two new combinations are proposed: Manampoka atsimo gen. nov., sp. nov. ; Rahavavy gen. nov. , including R. ida sp. nov. and R. fanivelona (Griswold, 1990) comb. nov. and R. malagasyana (Griswold, 1990) comb. nov. ; and Ambohima andrefana sp. nov. , A. antsinanana sp. nov. , A. avaratra sp. nov. , A. maizina sp. nov. , A. ranohira sp. nov. , A. vato sp. nov. , A. zandry sp. nov. and A. zoky sp. nov. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 728–810.  相似文献   

5.
The taxonomy of the New World species of the genus Trichadenotecnum is revised. A total of 44 species, including 29 new species, were treated. These species are classified into 12 monophyletic species groups, eight of them newly proposed here. Two species previously assigned to Trichadenotecnum , T. pichincha New & Thornton and T. sylvaticum Turner, are recognized as not belonging to this genus. Phylogenetic relationships among 16 previously and presently proposed species groups are estimated based on a data matrix of 58 morphological characters. Trees from these analyses support monophyly of Trichadenotecnum and the proposed species groups. The New World species were divided into three major clades. Based on the phylogenetic hypothesis and distributional pattern of the species groups, the biogeographical history of the New World Trichadenotecnum is discussed.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 153 , 651–723.  相似文献   

6.
Antrodiaetus riversi is a dispersal‐limited, habitat‐specialized mygalomorph spider species endemic to mesic woodlands of northern and central California. Here, we build upon prior phylogeographic research using a much larger geographic sample and include additional nuclear genes, providing more detailed biogeographic insights throughout the range of this complex. Of particular interest is the uncovering of unexpected and replicated trans‐valley biogeographic patterns, where in two separate genetic clades western haplotypes in the California south Coast Ranges are phylogenetically closely related to eastern haplotypes from central and northern Sierran foothills. In both instances, these trans‐valley phylogenetic patterns are strongly supported by multiple genes. These western and eastern populations are currently separated by the Central Valley, a well‐recognized modern‐day and historical biogeographic barrier in California. For one clade, the directionality is clearly northeast to southwest, and all available evidence is consistent with a jump dispersal event estimated at 1.2–1.3 Ma. During this time period, paleogeographic data indicate that northern Sierran rivers emptied to the ocean in the south Coast Ranges, rather than at the San Francisco Bay. For the other trans‐valley clade genetic evidence is less conclusive regarding the mechanism and directionality of biogeographic exchange, although the estimated timeframe is similar (approximately 1.8 Ma). Despite the large number of biogeographic studies previously conducted in central California, to the best of our knowledge no prior studies have discussed or revealed a northern Sierran to south Coast Range biogeographic connection. This uniqueness may reflect the low‐dispersal biology of mygalomorph spiders, where ‘post‐event’ gene exchange rarely erases historical biogeographic signal.  相似文献   

7.
8.
Phylogenetic analyses were conducted on cytochrome b sequence data of the most geographically and taxonomically broad sampling of Cavia taxa to date. Primary objectives included providing the first extensive molecular phylogenetic framework for the genus, testing the taxonomic and systematic hypotheses of previous authors and providing insight into the evolutionary and biogeographic history of the genus. Support was found for the morphologically defined species C. aperea, C. tschudii, C. magna and C. fulgida and the taxonomic placement of taxa previously subject to conflicting taxonomic opinions (e.g. C. nana, C. anolaimae and C. guianae) was further resolved. Additionally, we elevate the Ecuadorian C. a. patzelti to species status, restrict the distributional limits and suggest taxonomic affiliations of some C. tschudii subspecies, and provide strong evidence for the geographic origin of guinea pig domestication. Finally, we provide an estimated evolutionary timeline for the genus Cavia, which appears to extend well into the late Miocene.  相似文献   

9.
Spider diversity is partitioned into three primary clades, namely Mesothelae, Mygalomorphae, and Araneomorphae. Mygalomorph cytogenetics is largely unknown. Our study revealed a remarkable karyotype diversity of mygalomorphs. Unlike araneomorphs, they show no general trend towards a decrease of 2n, as the chromosome number was reduced in some lineages and increased in others. A biarmed karyotype is a symplesiomorphy of mygalomorphs and araneomorphs. Male meiosis of some mygalomorphs is achiasmatic, or includes the diffuse stage. The sex chromosome system X1X20, which is supposedly ancestral in spiders, is uncommon in mygalomorphs. Many mygalomorphs exhibit more than two (and up to 13) X chromosomes in males. The evolution of X chromosomes proceeded via the duplication of chromosomes, fissions, X–X, and X‐autosome fusions. Spiders also exhibit a homomorphic sex chromosome pair. In the germline of mygalomorph males these chromosomes are often deactivated; their deactivation and pairing is initiated already at spermatogonia. Remarkably, pairing of sex chromosomes in mygalomorph females is also initiated at gonial cells. Some mygalomorphs have two sex chromosome pairs. The second pair presumably arose in early‐diverging mygalomorphs, probably via genome duplication. The unique behaviour of spider sex chromosomes in the germline may promote meiotic pairing of homologous sex chromosomes and structural differentiation of their duplicates, as well as the establishment of polyploid genomes. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 377–408.  相似文献   

10.
We used a mitochondrial and nuclear DNA phylogeny to evaluate the relationships among all noddies (Anous and Procelsterna, Laridae) and to clarify their classification. The Lesser Noddy Anous tenuirostris and Black Noddy Anous minutus form a pair of closely related sister‐species, as do the Blue Noddy Procelsterna albivitta and Grey Noddy Procelsterna cerulea. Blue and Grey Noddies are embedded within the dark noddies and are the sister‐clade to the Lesser and Black Noddies, indicating that the genus Anous in its current definition is not monophyletic. Thus, we propose to merge all noddies into the genus Anous Stephens 1826 , and to consider Procelsterna Lafresnaye 1842 as a junior synonym.  相似文献   

11.
A partial sequence of the cytb gene (382 bp) was amplified and sequenced from 35 individuals (mainly museum specimens) of the genus Pernis representing all valid taxa (10) and two taxa (P. p. gurneyi, P. p. japonicus) with questionable validity as well as representatives of the Old World Perninae, namely Henicopernis and Aviceda, to assess their relationships to the genus Pernis. Furthermore, Gypaetus barbatus, Neophron percnopterus, and Buteo buteo were included as outgroup taxa. In the trees derived from the sequence data, Aviceda represents the sister group of the genus Pernis. The genus Henicopernis and the Old World vultures Gypaetus andNeophron appear rather distantly related to Pernis. Within the genus Pernis, two of the described species (Pernis apivorus, Pernis ptilorhyncus) form monophyletic groups, whereas the relationships of the two clades representing three subspecies of Pernis celebensis are still uncertain. Although this study is based on comparatively short DNA‐sections, the trees deduced from these sequences can be considered as a first approach for inferring the phylogenetic relationships of the genus Pernis and related genera and for addressing questions concerning the evolutionary history, biogeography, and systematics of this group.  相似文献   

12.
The molecular phylogeny and biogeography of the East Asian freshwater crabs of the genus Nanhaipotamon (Decapoda: Brachyura: Potamidae) were studied, using two mitochondrial (16S rRNA and cytochrome oxidase I) and one nuclear (28S rRNA) markers, and correlated with various vicariant and dispersal events which have occurred in this region. The results showed Nanhaipotamon to be a monophyletic taxon with four clades which correspond to the topography of the coastal region of southeastern China and Taiwan Island. Mountains appear to play an important role in the distribution. The genus occurs only from east of the Wuyishan Range (Zhejiang and Fujian) and south of the Nanling Range (Guangdong) in southern China, and is also present west of the Central Range in Taiwan. The molecular and geological data suggest that Nanhaipotamon originated in an area between the Wuyishan and Nanling Ranges. In this area, the main and earliest cladogenesis occurred at ~4.8 million years ago (mya), with speciation probably taking place at around 4mya. The molecular evidence strongly supports the recent invasion of the genus into Taiwan Island from northeastern Fujian, via the paleo-Minjiang River on the landbridge of Taiwan Strait. The presence of the genus in Dongyin Island, however, is through invasion from southeastern Zhejiang, during the Pleistocene glaciation period. Nanhaipotamon reached Taiwan and Dongyin Island at ~1.0 and 0.4 mya, respectively. A small population of Nanhaipotamon formosanum from Penghu Islands (Pescadores) in the central Taiwan Strait has a slightly different genetic constitution and suggests it is a relict of past Pleistocene glaciations.  相似文献   

13.
The genitalia of the female folding-trapdoor spider Antrodiaetus unicolor are characterized by two pairs of spermathecae that are arranged in a single row and connected to the roof of the bursa copulatrix. Each single spermatheca is divided into three main parts: stalk, bowl, and bulb, which are surrounded by the spermathecal gland. The epithelium of the spermathecal gland is underlain by a muscle meshwork and consists of different types of cells partly belonging to glandular cell units (Class 3 gland cells) that extend into pores in the cuticle of the stalk and bowl. Interestingly, the bulb lacks glandular pores and is characterized by a weakly sclerotized cuticle. This peculiarly structured bulb probably plays an important role in the discharge of the sperm mass. It is suggested that by contraction of the muscle layer the sperm mass may be squeezed out, when the bulb invaginates and expands into the spermathecal lumen, pushing the sperm to the uterus lumen. Each glandular unit consists of usually one or two central secretory cells that are for the most part surrounded by a connecting cell that again is surrounded by a canal cell. The canal cell, finally, is separated from the other epithelial cells (intercalary cells) located between the glandular units by several thin sheath cells that form the outer enveloping layer of the unit. The secretions are released through a cuticular duct that originates proximally between the apical part of the connecting cell and the apical microvilli of the secretory cells and runs into a pore of the spermathecal cuticle. The glandular products of the Class 3 gland cells likely contribute to the conditions allowing long-term storage of the spermatozoa in this species. Details regarding the ovary, the uterus internus, and the uterus externus are reported. Most of the secretion that composes the chorion of the egg is produced in the ovary. Glandular cell units observed in the uterus externus differ structurally from those in the spermathecae and likely play a different role. Finally, we briefly discuss our results on the female genitalia of A. unicolor in the light of knowledge about the reproductive biology of spiders.  相似文献   

14.
The Caribbean region includes a geologically complex mix of islands, which have served as a backdrop for some significant studies of biogeography, mostly with vertebrates. Here, we use the tropical/subtropical spider genus Selenops (Selenopidae) to obtain a finer resolution of the role of geology in shaping patterns of species diversity. We obtained a broad geographic sample from over 200 localities from both the islands and American mainland. DNA sequence data were generated for three mitochondrial genes and one nuclear gene for eleven outgroup taxa and nearly 60 selenopid species. Phylogenetic analysis of the data revealed several biogeographic patterns common to other lineages that have diversified in the region, the most significant being: (1) a distinct biogeographic break between Northern and Southern Lesser Antilles, although with a slight shift in the location of the disjunction; (2) diversification within the islands of Jamaica and Hispaniola; (3) higher diversity of species in the Greater Antilles relative to the Lesser Antilles. However, a strikingly unique pattern in Caribbean Selenops is that Cuban species are not basal in the Caribbean clade. Analyses to test competing hypotheses of vicariance and dispersal support colonization through GAARlandia, an Eocene–Oligocene land span extending from South America to the Greater Antilles, rather than over‐water dispersal. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 288–322.  相似文献   

15.
16.
Erithalis consists of 8–10 species endemic to the Caribbean Basin. DNA sequences of chloroplast (trnF-trnL) and nuclear non-coding spacers (ITS and ETS) indicate that Erithalis is monophyletic. ETS was the most informative marker, resolving some interspecific relationships. Analyses of the combined data revealed two weakly supported clades: one composed of E. fruticosa and E. nk;harrisii, and a sister clade of the remaining species. Since fossil records indicate the presence of Erithalis-like pollen from the Eocene Gatuncillo Formation of Panama, it is possible that an initial colonization may have been from Central America. Through trans-oceanic dispersal, most likely by birds, Erithalis colonized the Caribbean islands. Some of the inter-island colonizations were accompanied by speciation and low molecular divergence, supporting a recent radiation across these islands. Received October 3, 2001; accepted March 4, 2002 Published online: November 7, 2002 Address of the authors: Vivian Negrón-Ortiz (e-mail: negronv@muohio.edu), Linda E. Watson, Department of Botany, Miami University, Oxford, Ohio 45056, USA.  相似文献   

17.
报道了青藏高原地区的点地梅属Androsace L.及羽叶点地梅属Pomatosace Maxim.共14种29个居群的ITS与trnL-F DNA序列各27与25条;并结合已报道相关种类的有关序列,构建了“点地梅群”的分子系统发育树。研究发现“点地梅群”的4个属为一单系类群,含有两个稳定的分支:一支全部由点地梅属的种类组成,另一支分别由羽叶点地梅属、Douglasia Lindley、Vitaliana Sesler和9种点地梅属植物组成;点地梅属裂叶组sect. Samuelia Schlechtd.的3个种与点地梅组sect. Androsace的2个种在3套序列分析中位于不同的系统位置。各分支基部的种都分布在中国东南部及青藏高原东部,分子地理标记的结果支持形态学提出该地区为“点地梅群”植物起源地的假设。从青藏高原东部地区向欧洲及其他北半球地区存在不同时期内多个进化支的多次扩散。粗略的时间估算表明该群植物可能是在第三纪的中新世以来才开始发生的。垫状种类分别在青藏高原和欧洲独立起源,而在青藏高原地区的分化要早于在欧洲的分化,在前一地区可能与青藏高原自中新世开始发生的造山运动、形成高海拔的山地有关,而在后一地区则是与第三纪末至第四纪的冰期气候反复波动有关。垫状植物在青藏高原上的大规模分布则可能较晚,与冰期结束后全新世晚期气候再次变冷有关。一些物种种内的遗传分化也可能部分反映了气候来回波动中它们在高原上的退缩和再扩张过程  相似文献   

18.
A molecular phylogeny based on DNA/DNA hybridization revealed that the Sylvia-Parisoma complex is monophyletic and includes three main groups of species, the “mid-European” warblers, the genus Parisoma, and the “eu-Mediterranean” Sylvia species sensu stricto. The latter can be assigned to three main clusters, a “West-Mediterranean” group, a “Central-Mediterranean group”, and an “East-Mediterranean” group. The radiation of the whole complex is much more ancient than formerly believed. It started ca 12–13 Ma ago and the ancestors of the main extant groups differentiated during the Pliocene. Only speciation events within the “eu-Mediterranean” lineages occurred during the Pleistocene. The paleoclimatical and paleoecological history of the Mediterranean region is too complicated to provide any evidence for direct relationships between past events and evolutionary steps of these taxa which did not leave any reliable fossil record. However, some major speciation events may be related to well documented climatical crises as well as paleobotanical data. The largely man-induced extension of matorrals over several millenia presumably extended the range of several species that were formerly much more restricted, which complicates reconstruction of the spatio-temporal course of speciation.  相似文献   

19.
20.

Background and Aims

Pteris (Pteridaceae), comprising over 250 species, had been thought to be a monophyletic genus until the three monotypic genera Neurocallis, Ochropteris and Platyzoma were included. However, the relationships between the type species of the genus Pteris, P. longifolia, and other species are still unknown. Furthermore, several infrageneric morphological classifications have been proposed, but are debated. To date, no worldwide phylogenetic hypothesis has been proposed for the genus, and no comprehensive biogeographical history of Pteris, crucial to understanding its cosmopolitan distribution, has been presented.

Methods

A molecular phylogeny of Pteris is presented for 135 species, based on cpDNA rbcL and matK and using maximum parsimony, maximum likelihood and Bayesian inference approaches. The inferred phylogeny was used to assess the biogeographical history of Pteris and to reconstruct the evolution of one ecological and four morphological characters commonly used for infrageneric classifications.

Key Results

The monophyly of Pteris remains uncertain, especially regarding the relationship of Pteris with Actiniopteris + Onychium and Platyzoma. Pteris comprises 11 clades supported by combinations of ecological and morphological character states, but none of the characters used in previous classifications were found to be exclusive synapomorphies. The results indicate that Pteris diversified around 47 million years ago, and when species colonized new geographical areas they generated new lineages, which are associated with morphological character transitions.

Conclusions

This first phylogeny of Pteris on a global scale and including more than half of the diversity of the genus should contribute to a new, more reliable infrageneric classification of Pteris, based not only on a few morphological characters but also on ecological traits and geographical distribution. The inferred biogeographical history highlights long-distance dispersal as a major process shaping the worldwide distribution of the species. Colonization of different niches was followed by subsequent morphological diversification. Dispersal events followed by allopatric and parapatric speciation contribute to the species diversity of Pteris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号