首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The effect of brief far-red illumination on Chlorella pyrenoidosa cells has been investigated.An inhibition of oxygen evolution occurs 20 to 30 s after the end of the far-red illumination. This inhibition occurs in a step following the initial charge separation process by the System II centers. It is reversible in the light through a purely photochemical process.  相似文献   

2.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

3.
Photophysiology of Kalanchoë Seed Germination   总被引:2,自引:0,他引:2  
Germination of Kalanchoé blossfeldiana seeds is absolutely light-requiring and needs repeated daily light periods. With increasing length of the photoperiod there was a gradual escape from the far-red inhibition. This escape depended also upon the duration of the far-red exposure: 10-second far-red caused a strong inhibition after a 10- to 30-minute photoperiod and did not inhibit after a 4-hour day, although the effect of the latter was completely suppressed by 5 minutes far-red. The action of a 12-hour photoperiod was not reversed by 10 minutes far-red but it was by 12 hours far-red. Light intensity and temperature during the photoperiod were two other important factors influencing the escape from far-red inhibition. The common features of this escape displayed in very different photomorphological responses are stressed. In order to explain our results in terms of phytochrome action, we distinguish two effects of white light: 1) on the initial photoconversion of the inactive to the active PFR form 2) on the much slower transformation of PFR to a reacted form P*FR; the latter reaction can also proceed in darkness, but is enhanced by light and is dependent upon light intensity and temperature; this reacted phytochrome is not reversible by a brief far-red illumination.  相似文献   

4.
Photosystem II (PS II) contains two redox-active tyrosine residues on the donor side at symmetrical positions to the primary donor, P680. TyrZ, part of the water-oxidizing complex, is a preferential fast electron donor while TyrD is a slow auxiliary donor to P680 +. We used PS II membranes from spinach which were depleted of the water oxidation complex (Mn-depleted PS II) to study electron donation from both tyrosines by time-resolved EPR spectroscopy under visible and far-red continuous light and laser flash illumination. Our results show that under both illumination regimes, oxidation of TyrD occurs via equilibrium with TyrZ ? at pH 4.7 and 6.3. At pH 8.5 direct TyrD oxidation by P680 + occurs in the majority of the PS II centers. Under continuous far-red light illumination these reactions were less effective but still possible. Different photochemical steps were considered to explain the far-red light-induced electron donation from tyrosines and localization of the primary electron hole (P680 +) on the ChlD1 in Mn-depleted PS II after the far-red light-induced charge separation at room temperature is suggested.  相似文献   

5.
C. A. Thanos  K. Mitrakos 《Planta》1979,146(4):415-417
Maize caryopses sown in water germinate equally well either in darkness or under any light regime. However, when they are imbibed in mannitol solutions, continuous far-red light proves to be strongly inhibitory on the final germination as compared to darkness. Similar but less pronounced inhibition is also exhibited by continuous red or blue light. Intermittent far-red light can partially substitute for continuous far-red light in inhibiting maize caryopsis germination, and its effect is reversed to the intermittent red light level when red light is given immediately after each far-red illumination. These results are interpreted as a proof of existence and involvement of phytochrome in the germination control of maize caryopses, though its manifestation is realized only under osmotic stress.Abbreviations D darkness - FR far-red - R red - B blue - c-FR, c-R, c-B continuous FR, R, B, resp. - i-FR, i-R intermittent FR, R, resp.  相似文献   

6.
Chloroplast development was followed in intact bean leaves illuminatedwith far-red light by extracting chloroplasts at various timesto assay photosynthetic activities. Photochemical activity wasdetected in isolated chloroplasts prior to the times which werepreviously reported for intact leaf discs. Cyclic phosphorylationwas observed in isolated chloroplasts after 8 h of far-red illuminationwhile non-cyclic electron transport and phosphorylation weremeasurable after 12 and 16 h of illumination respectively. TheP/2e ratios were less than 0.5 after 24 h of far-red exposurebut approached a value of 1.0 by 60 h of illumination. Ammoniumchloride (10–3 M) had little effect on electron transportin isolated chloroplasts until after 24 h of far-red illumination.Chlorophyll a accumulated slowly from the onset of far-red illuminationwhile chlorophyll b was not detected until after 48 h of far-redexposure. Leaf fresh weight increased four-fold over the 60h illumination period. Electron microscopy of isolated chloroplasts from far-red-illuminatedleaves indicated the presence of unfused primary thylakoidsby 12 h of exposure and prolamellar bodies throughout the entire60 h illumination period. Grana were not observed in isolatedchloroplasts nor were they induced by a 2 min exposure of thechloroplasts to 172 000 lx of white light. O2 evolution in leaf discs of far-red-illuminated plants wasmeasurable after 16 h of illumination, attained a maximum valueby 36 h of far-red exposure, and then declined. Net CO2 fixationwas observed in leaf discs after 8 h of far-red illuminationand the rates remained constant for an additional 16 h, beforeincreasing at least two-fold.  相似文献   

7.
Two response groups were found among short-day plants grownin blue green-houses having a high or low far-red admixture.In one group flowering was promoted by low far-red and delayedby high far-red; the other group reacted in an opposite manner.In plants grown under 8-hr day and 16-hr night regimes, floweringin the low far-red group was promoted by red and inhibited byfar-red illumination preceding the 16-hr nights; in the highfar-red group flowering was promoted by far-red and inhibitedby red illumination preceding the dark periods. In both groupsflowering was inhibited by red light applied in the middle ofthe dark period. (Received March 18, 1974; )  相似文献   

8.
Filner B  Klein AO 《Plant physiology》1968,43(10):1587-1596
The phytochrome controlled increase in total protein in the primary leaf pair of etiolated bean (Phaseolus vulgaris var. Black Valentine) seedlings, which occurs during growth in the dark subsequent to a brief illumination, was investigated. Enzymes from the chloroplasts, the mitochondria, and the soluble cytoplasm all increase in total activity after the illumination.

The total protein and the ribulose carboxylase increases are not inhibited by FUdR, an inhibitor of DNA synthesis. Cycloheximide, an inhibitor of protein synthesis, applied at a time when the ribulose carboxylase activity increase has already commenced, blocks further increase. It was concluded that the total protein and the enzyme increases in the leaf are the result of increases in the per cell levels.

The initial brief illumination is saturating, but 40 minutes later the seedlings have acquired the ability to respond to a second brief illumination. The rate of increase in ribulose carboxylase activity in seedlings that have been illuminated twice is greater than the rate in seedlings that have been illuminated only once.

Far-red light prevents further increase in enzyme activity 48 hours after the initial illumination. There is a lag period interposed between the time of illumination with far-red light and the time at which the seedlings show the greatest effect of far-red light. It was concluded that the phytochrome influence on protein synthesis is not at the terminal steps.

  相似文献   

9.
Under far-red (>650 nm) illumination Anacystis nidulans grows poorly and develops a low chlorophyll content. During continued culture over many generations there are increases in growth rate and in the chlorophyll/phycocyanin ratio, usually occurring in concomitant and stepwise fashion. From such selection cultures six clones have been established which differ from the parent in pigment content and show improved growth rate in far-red light. From the evidence at hand the six clones are presumed to be spontaneous mutants selected under the photosynthetically restrictive condition of far-red illumination.  相似文献   

10.
Nitrite reductase in the excised etiolated leaves of maize showedthe photoreversibility by red and far-red light. Five minutesof red light illumination lead to a 130% increase in the enzymeactivity which was reversed by far-red light. The kinetics ofnitrite reductase activity under continuous far-red light showeda lag phase of 1 hr. (Received January 17, 1981; Accepted February 20, 1981)  相似文献   

11.
The effects of EDTA, EGTA, SKF 525-A (a selective inhibitor of cytochrome P-450) and rotenone were studied in betacyanin induction by 6 h red and 5 min far-red light, using etiolated, three-day-old Amaranthus caudatus L. half-seedlings. With 0.1 m M EDTA, EGTA and rotenone, and with 10 μ M SKF 525-A, mainly the far-red reversible betacyanin induction by red light was suppressed. Only in 0.1 m M rotenone was about 50% of that effect compensated by an increased far-red irreversible betacyanin induction. An unspecific inhibition was obtained with 0.1 m M SKF 525-A in both control and illuminated plants.
These results are consistent with the view that red light, but not far-red, causes Ca2+ efflux from both mitochondria and cytoplasm, whereas Ca2+ uptake is indicated mainly after illumination. The resulting switch in the coupling of the mitochondrial electron transport to a Ca2+ dependent one in cytochrome P-450 system via respiratory complex 1, appears to be responsible for the far-red reversibility. However, the bulk of the high irradiance reaction seems to be related to another secondary messenger, alternative to Ca2+.  相似文献   

12.
In this study, we show that CIPK14, a stress responsive CBL-interacting protein kinase gene, is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis seedlings. The CIPK14-impairment mutant cipk14 grown in continuous far-red (FR) light did not show greening when exposed to white light illumination for 15 h. By contrast, the FR-grown phytochrome A null mutant phyA greened within 0.5 h of exposure to white light. Although greening of Col-4 (wild-type) was not completely abolished by FR, it exhibited a significantly decreased greening capacity compared with that of phyA. Further analyses demonstrated that the expression of protochlorophyllide reductase (POR) genes was correlated with the greening ability of the genotypes. In addition, CIPK14 appeared to be regulated by both the circadian clock and PhyA. Taken together, these results suggest that CIPK14 plays a role in PhyA-mediated FR inhibition of seedling greening, and that a Ca-related kinase may be involved in a previously undefined branch point in the phytochrome A signaling pathway.  相似文献   

13.
Abstract. Peas were grown in controlled environments (12h white fluorescent light. ∼47 μmol photons m-2 s 1/12 dark, 25 °C), using (1) 15-min far-red illumination at the end of each photoperiod (brief FR) to simulate the increase in the far-red/red ratio near the end of the day, and (2) high levels of supplementary far-red light (red:far-red ratio=0.04) during the entire photoperiod (long-term FR) to simulate extreme shade conditions under a plant canopy. Brief FR illumination led to marked morphological effects attributable to phytochrome regulation, namely, an increase in internodal length, but a decrease in leaflet area, chloroplast size and chlorophyll content per chloroplast compared with the control. Significantly, brief FR illumination had little or no effect on the amounts of the major chloroplast components (ribulose 1.5-biphosphate carboxylase, adenosine triphosphate synthase, cytochrome b/f complex and Photosystem II) relative to chlorophyll or Photosystem I, and the leaf photosynthetic capacities per unit chlorophyll were similar. In contrast, supplementing high levels of far-red light during the entire photoperiod not only led to the phytochrome effects above, but there was also a marked increase in leaf photosynthetic capacity per unit chlorophyll. due to increased amounts of the major chloroplast components relative to chlorophyll or Photosystem I. We hypothesize that supplementary far-red light, absorbed by Photosystem I, induced an increase in the major chloroplast components by a photosynthetic feedback mechanism. In fully greened leaves, we propose that the two photosystems themselves, rather than phytochrome, may be the predominent sensors of light quantity in triggering modulations of the stoichiometries of chloroplast components, which in turn lead to varying photosynthetic capacities.  相似文献   

14.
The role of phyto chrome and flavins in blue light induction of betacyanin formation was studied in etiolated, three-day-old Amaranthus caudatus L. seedlings, using the criterion of far-red reversibility and exogenously applied riboflavin and KCN. The effect of riboflavin was studied using high fluence rate blue light (42.7 :nmol m−2s−1nm−1 at 450 nm). When present in the incubation medium during illumination, riboflavin promoted the far-red reversibility with short light treatments and suppressed the inductive action of continuous illumiaation. If added after light treatments, it promoted betacyanin formation. The filtration of blue light through the riboflavin solution caused profound changes in light quality without affecting the far-red reversibility after 30 mm illumination. The effect of 1 mM KCN was tested with 70'% lower fluence of blue light. Cyanide caused the suppression of the inductive effect with 5 min blue light, which was accompanied by an enhancement of betacyanin induction by the terminal far-red light pulse. With 30 min blue light, however, it caused the appearance of far-red reversibility. The inductive effect of continuous blue illumination was slightly promoted by this Inhibitor. These results demonstrate that the effect of blue light on the pbyto chrome system is complex, whereas the physiological (inductive) action of the flavin triplet state is limited to low fluence, short blue light treatments.  相似文献   

15.
A study was made of the effects of various durations, intensities and combinations of red and far-red light interruptions on the flowering responses of Xanthium pensylvanicum Wallr. A dual response to treatments of far-red light was observed. In short dark periods, far-red light alone did not greatly affect flowering but was able to overcome the inhibition of flowering caused by red light. In dark periods longer than 15 hours, far-red inhibited flowering and added to rather than overcame the inhibition by red light. The dark period length required for far-red inhibition remained the same whether far-red was given at the start or at the eighth hour of darkness.

In 48-hour dark periods Xanthium showed 3 responses to additions of red and far-red light breaks: A) response to red light; B) response to far-red light; and C) response to red followed by far-red light. Red light given any time in the first 30 hours of darkness overcame the inhibitory effect of far-red light given at either the start or the eighth hour of darkness. Red light given later than the thirtieth hour did not overcome the far-red effect.

Approximately the same energy of red light was required to overcome the inhibitory effect of far-red at the second hour of darkness as was required to produce maximum red light inhibition at the eighth hour. Although far-red light was most inhibitory when given early in a long dark period, approximately the same energy of far-red light was required to saturate the far-red response at the fourth, eighth and sixteenth hours.

The results are discussed in relation to other reports of far-red inhibition of flowering in short-day plants.

  相似文献   

16.
Summary Germination of Amaranthus caudatus is inhibited by light, far-red being the most effective part of the spectrum. At temperatures of 25° and below there is a low final germination percentage under continuous far-red whereas above 25° there is only a delaying effect. In the presence of a saturating concentration of gibberellic acid (GA3) at 25° seeds germinate under continuous far-red although they are delayed. At 25° seeds exposed to 48 hr far-red fail to germinate when transferred to darkness. This induced dormancy can be broken by a single short exposure to red light given at any time after the far-red illumination. This effect of short red can be reversed by a subsequent short period of far-red indicating that the seeds are phytochrome controlled. Although most seeds have escaped from the reversing effect of short far-red after an intervening dark period of 5 hours, germination is greatly reduced by continuous far-red at this time. Results of exposing seeds to varying periods of far-red before and after dark imbibition are interpreted in terms of a continual production of phytochrome in its active P fr form and a requirement for P fr action over a long period of time. Effects of intermittent and continuous low intensity far-red on the inhibition of germination provides further evidence for a low energy photoreaction involving phytochrome. Effects on Germination Index of continuous illumination with various light sources maintaining different P fr /P total ratios have been investigated. The results suggest that the proportion of phytochrome in the P fr form is the most important factor in the regulation of germination. A scheme for the phytochrome control of germination in Amaranthus caudatus is presented and possible explanations for the dependence on P fr /P total ratio are discussed.Holder of a Science Research Council Studentship.  相似文献   

17.
Photoinhibition of white clover seed germination at low water potential   总被引:1,自引:0,他引:1  
Photosensitivity of germination of white clover ( Trifolium repens L. cv. Podkowa) seeds was studied under water deficit (low water potential) conditions at 25°C. The seeds showed negative photoblastism, which was most pronounced at -0.03 MPa polyethylene glycol solution. Inhibition was observed at two different wavelength bands with maxima at 660 nm (R) and around 730 nm (FR). Red light acted identically to white light (maximum inhibition ca 50%). The effect of far-red illumination was less inhibitory (20–30%). The photoresponse required long illuminations (3 h exposures); saturation level was at 0.1 W m−2, independently of the light quality. White clover seed germination showed no reversibility of the effects of R and FR light. Prolonged illumination with R and FR increased the inhibition, and intermittent illumination had a higher effect than a continuous one. It was concluded that the photoinhibition of germination of seeds of Trifolium repens involves a reaction dependent on the rate of phytochrome interconversion, a property that is characteristic for the high irradiance reaction.  相似文献   

18.
The development of glycine oxidation activity in mitochondria in etiolated cucumber ( Cucumis sativus L., cv. Shinfushinari) cotyledons is regulated by phytochrome. This conclusion is based on two lines of evidence. 1. The oxidation activity was increased by continuous illumination of far-red light. 2. It was also increased by brief red light pulses, the effect of which was reversed by brief far-red light pulses. The light-induced increase in glycine oxidation and in glycine decarboxylase (EC 2.1.2.10) activity in the cotyledons was inhibited by cycloheximide, but not by chloramphenicol. While glycine oxidation activity continued to increase during light-illumination for 20 h, malate oxidation activity increased for 6 to 8 h after illumination and decreased thereafter. This transient increase in the activity of malate oxidation was also induced by red light pulses and the effect of the red light was reversed by far-red light pulses.  相似文献   

19.
R. Oelmüller  C. Schuster 《Planta》1987,172(1):60-70
The amount of in-vitro translatable mRNA of the light-harvesting chlorophyll a/b-binding protein (LHCP) of photosystem II strongly increases in darkness (D) after a 5-min red-light pulse while continuous illumination of mustard seedlings with far-red (FR), red or white light leads only to a slight increase in the amount of translatable LHCP-mRNA. No increase can be observed after a long-wavelength FR (RG9-light) pulse. However, a FR pretreatment prior to the RG9-light pulse strongly increase LHCP-mRNA accumulation in subsequent D. This is not observed in the case of the mRNA for the small subunit of ribulose-1.5-bisphosphate carboxylase. The increase of LHCP-mRNA in D after a FR pretreatment can be inhibited by a reillumination of the seedlings with FR. The inhibition of LHCP-mRNA accumulation during continuous illumination with FR and the strong increase in D following a FR illumination was found to be independent of chlorophyll biosynthesis since no correlation between chlorophyll biosynthesis and translatable LHCP-mRNA levels could be detected. Even strong changes in the amount of intermediates of chlorophyll biosynthesis caused by application of levulinic acid or 5-aminolevulinic acid did not affect LHCP-mRNA levels. Therefore, we conclude that the appearance of LHCP-mRNA is inhibited during continuous illumination, even though illumination leads to a storage of a light singal which promotes accumulation of translatable LHCP-mRNA in D.Abbreviations c continuous - Chl chlorophyll - D darkness - FR far-red light (3.5 W·m-2) - LHCP light-harvesting chlorophyll a/b-binding protein of photosystem II - NF Norfluration - PChl protochlorophyll(ide) - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome - R red light (6.8 W·m-2) - RG9-light long-wavelength FR (10 W·m-2) - SSU small subunit of ribulose-1.5-bisphosphate carboxylase - WL white light - () Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

20.
With the aim to specifically study the molecular mechanisms behind photoinhibition of photosystem I, stacked spinach (Spinacia oleracea) thylakoids were irradiated at 4 degrees C with far-red light (>715 nm) exciting photosystem I, but not photosystem II. Selective excitation of photosystem I by far-red light for 130 min resulted in a 40% inactivation of photosystem I. It is surprising that this treatment also caused up to 90% damage to photosystem II. This suggests that active oxygen produced at the reducing side of photosystem I is highly damaging to photosystem II. Only a small pool of the D1-protein was degraded. However, most of the D1-protein was modified to a slightly higher molecular mass, indicative of a damage-induced conformational change. The far-red illumination was also performed using destacked and randomized thylakoids in which the distance between the photosystems is shorter. Upon 130 min of illumination, photosystem I showed an approximate 40% inactivation as in stacked thylakoids. In contrast, photosystem II only showed 40% inactivation in destacked and randomized thylakoids, less than one-half of the inactivation observed using stacked thylakoids. In accordance with this, photosystem II, but not photosystem I is more protected from photoinhibition in destacked thylakoids. Addition of active oxygen scavengers during the far-red photosystem I illumination demonstrated superoxide to be a major cause of damage to photosystem I, whereas photosystem II was damaged mainly by superoxide and hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号