首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial lipid-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-dolichyl pyrophosphate (Dol-PP) for N-glycan is synthesized and assembled at the membrane of the endoplasmic reticulum (ER) and subsequently transferred to a nascent polypeptide by the oligosaccharide transferase complex. We have identified an ALG3 homolog (HpALG3) coding for a dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase in the methylotrophic yeast Hansenula polymorpha. The detailed analysis of glycan structure by linkage-specific mannosidase digestion showed that HpALG3 is responsible for the conversion of Man5GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP, the first step to attach a mannose to the lipid-linked oligosaccharide in the ER. The N-glycosylation pathway of H. polymorpha has been remodeled by deleting the HpALG3 gene in the Hpoch1 null mutant strain blocked in the yeast-specific outer mannose chain synthesis and by introducing an ER-targeted Aspergillus saitoi alpha-1,2-mannosidase gene. This glycoengineered H. polymorpha strain produced glycoproteins mainly containing trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core backbone of various human-type N-glycans. The results demonstrate the high potential of H. polymorpha to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

2.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative alpha-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with alpha-1,2- and alpha-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first alpha-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

3.
This review covers the unique catalytic and molecular properties of three proteolytic enzymes and a glycosidase from Aspergillus. An aspartic proteinase from A. saitoi, aspergillopepsin I (EC 3.4.23.18), favors hydrophobic amino acids at P1 and P'1 like gastric pepsin. However, aspergillopepsin I accommodates a Lys residue at P1, which leads to activation of trypsinogens like duodenum enteropeptidase. Substitution of Asp76 to Ser or Thr and deletion of Ser78, corresponding to the mammalian aspartic proteinases, cathepsin D and pepsin, caused drastic decreases in the activities towards substrates containing a basic amino acid residue at 1. In addition, the double mutant T77D/G78(S)G79 of porcine pepsin was able to activate bovine trypsinogen to trypsin by the selective cleavage of the K6-I7 bond of trypsinogen. Deuterolysin (EC 3.4.24.39) from A. oryzae, which contains 1g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. It was concluded that His128, His132, and Asp164 provide the Zn2+ ligands of the enzyme according to a 65Zn binding assay. Deuterolysin is a member of a family of metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand. Acid carboxypeptidase (EC 3.4.16.1) from A. saitoi is a glycoprotein that contains both N- and O-linked sugar chains. Site-directed mutagenesis of the cpdS, cDNA encoding A. saitoi carboxypeptidase, was cloned and expressed. A. saitoi carboxypeptidase indicated that Ser153, Asp357, and His436 residues were essential for the enzymic catalysis. The N-glycanase released high-mannose type oligosaccharides that were separated on HPLC. Two, which had unique structures of Man10 GlcNAc2 and Man11GlcNAc2, were characterized. An acidic 1,2-alpha-mannosidase (EC 3.2.1.113) was isolated from the culture of A. saitoi. A highly efficient overexpression system of 1,2-alpha-mannosidase fusion gene (f-msdS) in A. oryzae was made. A yeast mutant capable of producing Man5GlcNAc2 human-compatible sugar chains on glycoproteins was constructed. An expression vector for 1,2-alpha-mannosidase with the "HDEL" endoplasmic reticulum retention/retrieval tag was designed and expressed in Saccharomyces cerevisiae. The first report of production of human-compatible high mannose-type (Man5GlcNAc2) sugar chains in S. cerevisiae was described.  相似文献   

4.
The alpha-1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 (ScOCH1) is responsible for the outer chain initiation of N-linked oligosaccharides. To identify the genes involved in the first step of outer chain biosynthesis in the methylotrophic yeast Hansenula polymorpha, we undertook the functional analysis of three H. polymorpha genes, HpHOC1, HpOCH1, and HpOCR1, that belong to the OCH1 family containing seven members with significant sequence identities to ScOCH1. The deletions of these H. polymorpha genes individually resulted in several phenotypes suggestive of cell wall defects. Whereas the deletion of HpHOC1 (Hphoc1Delta) did not generate any detectable changes in N-glycosylation, the null mutant strains of HpOCH1 (Hpoch1Delta) and HpOCR1 (Hpocr1Delta) displayed a remarkable reduction in hypermannosylation. Although the apparent phenotypes of Hpocr1Delta were most similar to those of S. cerevisiae och1 mutants, the detailed structural analysis of N-glycans revealed that the major defect of Hpocr1Delta is not in the initiation step but rather in the subsequent step of outer chain elongation by alpha-1,2-mannose addition. Most interestingly, Hpocr1Delta showed a severe defect in the O-linked glycosylation of extracellular chitinase, representing HpOCR1 as a novel member of the OCH1 family implicated in both N- and O-linked glycosylation. In contrast, addition of the first alpha-1,6-mannose residue onto the core oligosaccharide Man8GlcNAc2 was completely blocked in Hpoch1Delta despite the comparable growth of its wild type under normal growth conditions. The complementation of the S. cerevisiae och1 null mutation by the expression of HpOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in Hpoch1Delta provided supportive evidence that HpOCH1 is the functional orthologue of ScOCH1. The engineered Hpoch1Delta strain with the targeted expression of Aspergillus saitoi alpha-1,2-mannosidase in the endoplasmic reticulum was shown to produce human-compatible high mannose-type Man5GlcNAc2 oligosaccharide as a major N-glycan.  相似文献   

5.
UDP-N-Acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-I) is an essential enzyme in the conversion of high mannose type oligosaccharide to the hybrid or complex type. The full length of the rat GnT-I gene was expressed in the filamentous fungus Aspergillus oryzae. A microsomal preparation from a recombinant fungus (strain NG) showed GnT-I activity that transferred N-acetylglucosamine residue to acceptor heptaose, Man(5)GlcNAc(2). The N-linked sugar chain of alpha-amylase secreted by the strain showed a peak of novel retention on high performance liquid chromatography that was same as a reaction product of in vitro GnT-1 assay. The peak of oligosaccharide disappeared on HPLC after beta-N-acetylglucosaminidase treatment. Mass analysis supported the presence of GlcNAcMan(5)GlcNAc(2) as a sugar chain of alpha-amylase from strain NG. Chimera of GnT-I with green fluorescent protein (GFP) showed a dotted pattern of fluorescence in the mycelia, suggesting localization at Golgi vesicles. We concluded that GnT-1 was functionally expressed in A. oryzae cells and that N-acetylglucosamine residue was transferred to N-glycan of alpha-amylase in vivo. A. oryzae is expected to be a potential host for the production of glycoprotein with a genetically altered sugar chain.  相似文献   

6.
N-glycans are synthesized in both yeast and mammals through the ordered assembly of a lipid-linked core Glc(3)Man(9)GlcNAc(2) structure that is subsequently transferred to a nascent protein in the endoplasmic reticulum. Once folded, glycoproteins are then shuttled to the Golgi, where additional but divergent processing occurs in mammals and fungi. We cloned the Pichia pastoris homolog of the ALG3 gene, which encodes the enzyme that converts Man(5)GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP. Deletion of this gene in an och1 mutant background resulted in the secretion of glycoproteins with a predicted Man(5)GlcNAc(2) structure that could be trimmed to Man(3)GlcNAc(2) by in vitro alpha-1,2-mannosidase treatment. However, several larger glycans ranging from Hex(6)GlcNAc(2) to Hex(12)GlcNAc(2) were also observed that were recalcitrant to an array of mannosidase digests. These results contrast the far simpler glycan profile found in Saccharomyces cerevisiae alg3-1 och1, indicating diverging Golgi processing in these two closely related yeasts. Finally, analysis of the P. pastoris alg3 deletion mutant in the presence and absence of the outer chain initiating Och1p alpha-1,6-mannosyltransferase activity suggests that the PpOch1p has a broader substrate specificity compared to its S. cerevisiae counterpart.  相似文献   

7.
A particulate fraction from the Saccharomyces cerevisiae mnn1 mutant was obtained after extracting a 115,000 x g pellet with 0.75% Triton X-100. Incubation of this preparation with labeled Man8GlcNAc and Man9GlcNAc in the presence of GDP-mannose followed by high pressure liquid chromatography showed the formation of Man9GlcNAc and Man10GlcNAc, respectively. Analysis by high resolution 1H NMR of the products indicates that, in each case, the mannose residue added is alpha-1,6-linked to the alpha-1,6-mannose residue of the substrate as follows (where M represents mannose and Gn represents N-acetylglucosamine): (Formula: see text). The mannosyltransferase therefore catalyzes the first step specific to the biosynthesis of the outer chain of yeast mannoproteins. The apparent Km values for both substrates are similar: 0.39 mM for Man8GlcNAc and 0.35 mM for Man9GlcNAc. The alpha-1,6-mannosyltransferase exhibits maximum activity between pH 7.1 and 7.6 in Tris maleate buffer, has an absolute requirement for Mn2+, and also requires Triton X-100. These results indicate that removal of the alpha-1,2-linked mannose residue from Man9GlcNAc is not essential for the alpha-1,6-mannosyltransferase which initiates outer chain synthesis, at least when oligosaccharides are used as substrates in a cell-free system.  相似文献   

8.
Kitajima T  Chiba Y  Jigami Y 《The FEBS journal》2006,273(22):5074-5085
In yeast, the N-linked oligosaccharide modification in the Golgi apparatus is initiated by alpha1,6-mannosyltransferase (encoded by the OCH1 gene) with the addition of mannose to the Man(8)GlcNAc(2) or Man(9)GlcNAc(2) endoplasmic reticulum intermediates. In order to characterize its enzymatic properties, the soluble form of the recombinant Och1p was expressed in the methylotrophic yeast Pichia pastoris as a secreted protein, after truncation of its transmembrane region and fusion with myc and histidine tags at the C-terminus, and purified using a metal chelating column. The enzymatic reaction was performed using various kinds of pyridylaminated (PA) sugar chains as acceptor, and the products were separated by high performance liquid chromatography. The recombinant Och1p efficiently transferred a mannose to Man(8)GlcNAc(2)-PA and Man(9)GlcNAc(2)-PA acceptors, while Man(5)GlcNAc(2)-PA, which completely lacks alpha1,2-linked mannose residues, was not used as an acceptor. At high enzyme concentrations, a novel product was detected by HPLC. Analysis of the product revealed that a second mannose was attached at the 6-O-position of alpha1,3-linked mannose branching from the alpha1,6-linked mannose that is attached to beta1,4-linked mannose of Man(10)GlcNAc(2)-PA produced by the original activity of Och1p. Our results indicate that Och1p has the potential to transfer two mannoses from GDP-mannose, and strictly recognizes the overall structure of high mannose type oligosaccharide.  相似文献   

9.
We have isolated the gene from Saccharomyces cerevisiae encoding an alpha-mannosidase of unique specificity which catalyzes the removal of one mannose residue from Man9GlcNAc to produce a single isomer of Man8GlcNAc (Jelinek-Kelly, S., and Herscovics, A. (1988) J. Biol. Chem. 263, 14757-14763). Amino acid sequence information was obtained and corresponding degenerate oligonucleotide primers were synthesized for polymerase chain reactions on yeast genomic DNA. The labeled polymerase chain reaction products were used to screen a S. cerevisiae genomic library in YEp24, and positive clones of different lengths with similar restriction maps were isolated. A 4.6-kilobase fragment which hybridized with the probes was sequenced. It contained a 1650-base pair open reading frame encoding peptide sequences corresponding to the amino acid sequences of the purified alpha-mannosidase. The gene, designated MNS1, encodes a 549-amino acid polypeptide of calculated molecular size 63,017 Da produced by an mRNA species of approximately 1.7 kilobases. The protein possesses a putative noncleavable signal sequence near its N-terminal region which probably acts as a transmembrane domain. It has three potential N-glycosylation sites and a calcium-binding consensus sequence. Its amino acid sequence is homologous to the recently isolated cDNA from rabbit liver alpha-1,2 mannosidase which can transform Man9GlcNAc to Man5GlcNAc (Moremen, K. W., Schutzbach, J. S., Forsee, W. T., Neame, P., Bishoff, J., Lodish, H. F., and Robbins, P. W. (1990) Glycoconjugate J. 7, 401). Overexpression of the MNS1 gene caused an 8-10-fold increase in specific alpha-mannosidase activity. Disruption of the MNS1 gene resulted in undetectable specific alpha-mannosidase activity but no apparent effect on growth. These results demonstrate that MNS1 is the structural gene for the specific alpha-mannosidase and that its activity is not essential for viability.  相似文献   

10.
ABSTRACT: BACKGROUND: Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS). Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. RESULTS: We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi alpha-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the alpha-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained alpha-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. CONCLUSIONS: We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a heterologous expression host and makes it possible to produce glycoproteins with homogeneously glycosylated N-glycans of the human high-mannose-type, which greatly broadens the application scope of these glycoproteins.  相似文献   

11.
The zygomycete fungus Rhizomucor pusillus secretes an aspartic proteinase (MPP) that contains asparagine ( N )-linked oligosaccharides at two sites. Mutant strain 1116 defective in N -glycosylation secretes MPP with truncated oligo-saccharide chains. Lipid-linked oligosaccharides in mutant 1116 were labeled with [6-(3)H]glucosamine and [2-(3)H]mannose, prepared by cycles of solvent extraction, and analyzed by gel filtration chromatography on a Bio-Gel P-4 column after mild acid-hydrolysis. Mutant 1116 accumulated an intermediate, Man(1)GlcNAc(2)-dolichol pyrophosphate (PP-Dol), whereas wild-type strain F27 synthesized the fully assembled oligosaccharide precursor Glc(3)Man(9)GlcNAc(2)-PP-Dol. Consistent with this, alg2 encoding a mannosyltransferase in the lipid-linked oligosaccharide biosynthetic pathway in mutant 1116 had a 5 bp insertion that generated a stop codon in the middle of the coding sequence. Transformation of mutant 1116 with the intact alg2 gene on a pUC19-derived plasmid generated transformants that contained multicopies of alg2 at the alg2 locus. Glycosylation of the total proteins in the transformants was recovered to the same level as in strain F27, as determined with peroxidase-concanavalin A. These transformants produced MPP mainly with the same N -linked oligosaccharides as that produced by strain F27, but still with truncated oligosaccharides in small amounts. All of these data show that Alg2 is an alpha-1,3 or alpha-1,6 mannosyltransferase that elongates Man(1)GlcNAc(2)-PP-Dol to Man(2)GlcNAc(2)-PP-Dol. The slower growth of mutant 1116 was significantly recovered on introduction of alg2. The viability of the alg2 mutants of the zygomycete R.pusillus makes a contrast with the lethal effect of ALG2 mutations in the yeast Saccharomyces cerevisiae.  相似文献   

12.
When human antibody genes were expressed in the methylotrophic yeast Ogataea minuta, the secreted antibody became partially degraded. To suppress the degradation, a vacuolar protease-deficient strain was constructed and its antibody production was evaluated. Although antibody productivity was improved in the vacuolar protease-deficient strain, the secreted antibody still became partially degraded. Peptide sequencing revealed that the cleavage occurred in the CH1 region of the heavy chain, implying that the cleavage was caused by an aspartic protease, Yps1p. To inhibit this cleavage, Yps1p-deficient strains were constructed and their antibody production was evaluated. As a result, the partial degradation of the antibody was suppressed in the O. minuta multiple-protease-deficient strains.  相似文献   

13.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

14.
Therapeutic glycoprotein production in the widely used expression host Pichia pastoris is hampered by the differences in the protein-linked carbohydrate biosynthesis between this yeast and the target organisms such as man. A significant step towards the generation of human-compatible N-glycans in this organism is the conversion of the yeast-type high-mannose glycans to mammalian-type high-mannose and/or complex glycans. In this perspective, we have co-expressed an endoplasmic reticulum-targeted Trichoderma reesei 1,2-alpha-D-mannosidase with two glycoproteins: influenza virus haemagglutinin and Trypanosoma cruzi trans-sialidase. Analysis of the N-glycans of the two purified proteins showed a >85% decrease in the number of alpha-1,2-linked mannose residues. Moreover, the human-type high-mannose oligosaccharide Man(5)GlcNAc(2) was the major N-glycan of the glyco-engineered trans-sialidase, indicating that N-glycan engineering can be effectively accomplished in P. pastoris.  相似文献   

15.
Structures of sugar chains of the third component of human complement   总被引:2,自引:0,他引:2  
Human C3, the third component of human complement, contained mannose and N-acetylglucosamine as sugar components. The sugar chains were liberated from the polypeptide chains by hydrazinolysis, and the free amino groups were N-acetylated. The reducing end residues of the sugar chains thus obtained were tagged with 2-aminopyridine, and the pyridylamino (PA-) derivatives of sugar chains were separated by high-performance liquid chromatography. The structures of purified PA-sugar chains were analyzed by a combination of stepwise exoglycosidase digestions, size determination by paper electrophoresis, methylation analysis, Smith degradation, and partial acetolysis. These results showed that C3 contained two high-mannose type sugar chains ranging from Man5GlcNAc2 to Man9GlcNAc2. Analyses of the sugar chains of alpha- and beta-chains of C3 indicated that the alpha-chain contained mainly Man8GlcNAc2 and Man9GlcNAc2, while the beta-chain contained mainly Man5GlcNAc2 and Man6GlcNAc2.  相似文献   

16.
The primary structure of the N-linked sugar chains of glucose oxidase from Aspergillus niger was investigated. These sugar chains were released from the polypeptide backbone by hydrazinolysis, and the reducing ends of the sugar chains were pyridylaminated. HPLC of the pyridylamino sugar chains with an amide-silica column showed at least seven sugar chain peaks. Chemical and exoglycosidase digestion and 400 lMHz H-NMR studies of the sugar chains of lower molecular weight showed that these were novel oligomannose-type sugar chains, (Man)5-7 (GlcNAc)2, with the structure: +/- Man alpha 1----3Man alpha 1----3(Man alpha 1----6)Man alpha 1----6(+/- Man alpha 1----3Man alpha 1---3)Man )Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

17.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

18.
The fission yeast Schizosaccharomyces pombe attaches an outer chain containing mannose and galactose to the N-linked oligosaccharides on many of its glycoproteins. We identified an S. pombe och1 mutant that did not synthesize the outer chains on acid phosphatase. The S. pombe och1(+) gene was a functional homolog of Saccharomyces cerevisiae OCH1, and its gene product (SpOch1p) incorporated alpha-1,6-linked mannose into pyridylaminated Man(9)GlcNAc(2), indicating that och1(+) encodes an alpha-1,6-mannosyltransferase. Our results indicate that SpOch1p is a key enzyme of outer chain elongation. The substrate specificity of SpOch1p was different from that of S. cerevisiae OCH1 gene product (ScOch1p), suggesting that SpOch1p may have a wider substrate specificity than that of ScOch1p.  相似文献   

19.
In order to study the substrate specificities of the enzymes implicated in the catabolism of oligomannosidic-type glycans, the oligosaccharides Man9GlcNAc and Man5GlcNAc were incubated with rat liver lysosomal and cytosolic alpha-D-mannosidases and the hydrolysis products were characterized by 400 MHz 1H-NMR spectroscopy. Although they both occur in an ordered way, the two catabolic pathways are quite different. The lysomal pathway is realized in two stages: the first leads from Man9GlcNAc to Man5GlcNAc by preferential cleavage of the four alpha-1,2-linked mannose residues, and the second, Zn(2+)-dependent, leads from Man5GlcNAc to Man (beta 1-4) GlcN Ac by hydrolysis of alpha-1, 3- and alpha-1,6-linked residues. On the contrary, the cytosolic pattern leads by a pathway quite different to a unique hexasaccharide Man5GlcNAc which has, curiously, the same structure as one of the polyprenolic intermediates occurring in the cytosol during the biosynthesis of N-glycosylprotein glycans: Man (alpha 1-2) Man (alpha 1-2) Man (alpha 1-3) [Man (alpha 1-6)] Man (beta 1-4) GlcN Ac (beta 1-4) GlcNAc alpha 1-P-P-Dol.  相似文献   

20.
The structures of N-linked sugar chains of glycoproteins expressed in tobacco BY2 cultured cells are reported. Five pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were identified by two-dimensional PA-sugar chain mapping, ion-spray MS/MS analysis, and exoglycosidase digestions. The five structures fell into two categories; the major class (92.5% as molar ratio) was a xylose containing-type (Man3Fuc1 Xyl1GlcNAc2 (41.0%), GlcNAc2Man3Fuc1Xyl1GlcNAc2 (26.5%), GlcNAc1Man3Fuc1Xyl1GlcNAc2 (21.7%), Man3 Xyl1GlcNAc2 (3.3%)), and the minor class was a high-mannose type (Man5GlcNAc2 (7.5%)). This is the first report to show that alpha(1-->3) fucosylation of N-glycans does occur but beta(1-->4) galactosylation of the sugar chains does not in the tobacco cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号