首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li B  Tian X 《Phytochemistry》2001,57(4):543-546
Three flavonol glycosides quercetin 7-O-(6-trans-caffeoyl)-beta-glucopyranosyl-(1-->3)-alpha-rhamnopyranoside-3-O-beta-glucopyranoside (1), kaempferol 7-O-(6-trans-caffeoyl)-beta-glucopyranosyl-(1-->3)-alpha-rhamnopyranoside-3-O-beta-glucopyranoside (2), and kaempferol 7-O-(6-trans-p-coumaroyl)-beta-glucopyranosyl-(1-->3)-alpha-rhamnopyranoside-3-O-beta-glucopyranoside (3), together with the known beta-3,4-dihydroxyphenethyl beta-glucopyranoside, were isolated from the flowers of Aconitum napellus subsp. neomontanum. Their structures were elucidated by spectroscopic methods, including 2D NMR spectral techniques.  相似文献   

2.
Shang XY  Wang YH  Li C  Zhang CZ  Yang YC  Shi JG 《Phytochemistry》2006,67(5):511-515
Four acetylated flavonol diglucosides, quercetin 3-O-[2'-O-acetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], quercetin 3-O-[2',6'-O-diacetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], isorhamnetin 3-O-[2'-O-acetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], and quercetin 3-O-[2'-O-acetyl-alpha-l-arabinopyranosyl-(1-->6)-beta-d-glucopyranoside], together with five known flavonol glycosides quercetin 3-O-beta-d-glucopyranoside, kaempferol 3-O-beta-d-glucopyranoside, quercetin 3-O-[beta-d-galactopyranosyl-(1-->6)-glucopyranoside], isorhamnetin 3-O-[beta-d-galactopyranosyl-(1-->6)-beta-d-glucopyranoside], and kaempferol 3-O-[beta-d-glucopyranosyl-(1-->2)-beta-d-glucopyranoside] have been isolated from Meconopsis quintuplinervia. Their structures were determined using chemical and spectroscopic methods including HRFABMS, (1)H-(1)H COSY, HSQC and HMBC experiments.  相似文献   

3.
In this paper, we report studies on morphological, phytochemical, and biological aspects of a population belonging to Aconitum anthora L. Two compounds, quercetin 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (1) and kaempferol 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (2), together with two known flavonol glycosides (3-4) were isolated and identified from A. anthora. The antioxidant activity of the four identified flavonoids was screened by three in vitro tests.  相似文献   

4.
Two new flavonol glycosides and three known flavonoids were isolated from seeds of Camellia semiserrata Chi. The structures of these new flavonol glycosides were established as kaempferol 3-O-[(2',3',4'-triacetyl)-alpha-L-rhamnopyranosyl(1-->3)(2',4'-diacetyl)-alpha-L-rhamnopyranosyl (1-->6)-beta-D-glucopyranoside] and kaempferol 3-O-[(3',4'-diacetyl)-alpha-L-rhamnopyranosyl(1-->3)(2',4'-diacetyl)-alpha-L-rhamnopyranosyl(1-->6)-beta-D-glucopyranoside] by spectroscopic methods. The estrogenic activity of these compounds was investigated by a recombinant yeast screening assay.  相似文献   

5.
The anthocyanins, cyanidin 3-O-(3"-O-beta-glucopyranosyl-6"-O-malonyl-beta-glucopyranoside)-4'-O-beta-glucopyranoside, cyanidin 7-O-(3"-O-beta-glucopyranosyl-6"-O-malonyl-beta-glucopyranoside)-4'-O-beta-glucopyranoside, cyanidin 3,4'-di-O-beta-glucopyranoside, cyanidin 4'-O-beta-glucoside, peonidin 3-O-(6"-O-malonyl-beta-glucopyranoside)-5-O-beta-glucopyranoside and peonidin 3-O-(6"-O-malonyl-beta-glucopyranoside) have been isolated in minor amounts from pigmented scales of red onion, Allium cepa, in addition to six known anthocyanins. The structures were established mainly by extensive use of 2D NMR spectroscopy and electrospray LC-MS. With exception of cyanidin 4'-glucoside and cyanidin 3,4'-diglucoside reported from Hibiscus esculentus with inadequate documentation, this is the first identification of anthocyanins with 4'-glycosidation. Compared to cyanidin 3-glycosides the cyanidin 4'-glucoside derivatives showed hypsochromic shifts of visible lambda(max) and hyperchromic effects on wavelengths around 440 nm, similar to pelargonidin 3-glycosides.  相似文献   

6.
Two rare anthocyanins, cyanidin 3-(6-malonylglucoside)-7,3′-di(6-sinapylglucoside) and the demalonyl derivative, were characterised as the purple floral pigments of Dendrobium cv. ‘Pompadour’. Nine known flavonol glycosides were also identified, including the 3-rutinoside-7-glucosides of kaempferol and quercetin. One new glycoside was detected: the ferulyl ester of quercetin 7-rutinoside-7-glucoside. These flavonoid patterns are typical for plants in the family Orchidaceae.  相似文献   

7.
Four new flavonol gycosides: kaempferide 3-O-beta-xylosyl (1-->2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4'-di-O-beta-galactoside, kaempferol 3,7,4'-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1-->6)] [beta-glucosyl (1-->2)]-beta-glucoside-7-O-alpha-rhamnoside, were characterized from a methanolic leaf extract of Warburgia ugandensis. The known flavonols: kaempferol, kaempferol 3-rhamnoside, kaempferol 3-rutinoside, myricetin, quercetin 3-rhamnoside, kaempferol 3-arabinoside, quercetin 3-glucoside, quercetin, kaempferol 3-rhamnoside-4'-galactoside, myricetin 3-galactoside and kaempferol 3-glucoside were also isolated. Structures were established by spectroscopic and chemical methods and by comparison with authentic samples.  相似文献   

8.
Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.  相似文献   

9.
Recently marketed genetically modified violet carnations cv. Moondust and Moonshadow (Dianthus caryophyllus) produce a delphinidin type anthocyanin that native carnations cannot produce and this was achieved by heterologous flavonoid 3',5'-hydroxylase gene expression. Since wild type carnations lack a flavonoid 3',5'-hydroxylase gene, they cannot produce delphinidin, and instead accumulate pelargonidin or cyanidin type anthocyanins, such as pelargonidin or cyanidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester. On the other hand, the anthocyanins in the transgenic flowers were revealed to be delphinidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester (main pigment), delphinidin 3,5-diglucoside-6"-malyl ester, and delphinidin 3,5-diglucoside-6",6"'- dimalyl ester. These are delphinidin derivatives analogous to the natural carnation anthocyanins. This observation indicates that carnation anthocyanin biosynthetic enzymes are versatile enough to modify delphinidin. Additionally, the petals contained flavonol and flavone glycosides. Three of them were identified by spectroscopic methods to be kaempferol 3-(6"'-rhamnosyl-2"'-glucosyl-glucoside), kaempferol 3-(6"'-rhamnosyl-2"'-(6-malyl-glucosyl)-glucoside), and apigenin 6-C-glucosyl-7-O-glucoside-6"'-malyl ester. Among these flavonoids, the apigenin derivative exhibited the strongest co-pigment effect. When two equivalents of the apigenin derivative were added to 1 mM of the main pigment (delphinidin 3,5-diglucoside-6"-O-4,6"'-O-1-cyclic-malyl diester) dissolved in pH 5.0 buffer solution, the lambda(max) shifted to a wavelength 28 nm longer. The vacuolar pH of the Moonshadow flower was estimated to be around 5.5 by measuring the pH of petal. We conclude that the following reasons account for the bluish hue of the transgenic carnation flowers: (1). accumulation of the delphinidin type anthocyanins as a result of flavonoid 3',5'-hydroxylase gene expression, (2). the presence of the flavone derivative strong co-pigment, and (3). an estimated relatively high vacuolar pH of 5.5.  相似文献   

10.
Zhu M  Zheng X  Shu Q  Li H  Zhong P  Zhang H  Xu Y  Wang L  Wang L 《PloS one》2012,7(4):e34335
Water lily, the member of the Nymphaeaceae family, is the symbol of Buddhism and Brahmanism in India. Despite its limited researches on flower color variations and formation mechanism, water lily has background of blue flowers and displays an exceptionally wide diversity of flower colors from purple, red, blue to yellow, in nature. In this study, 34 flavonoids were identified among 35 tropical cultivars by high-performance liquid chromatography (HPLC) with photodiode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS). Among them, four anthocyanins: delphinidin 3-O-rhamnosyl-5-O-galactoside (Dp3Rh5Ga), delphinidin 3-O-(2"-O-galloyl-6"-O-oxalyl-rhamnoside) (Dp3galloyl-oxalylRh), delphinidin 3-O-(6"-O-acetyl-β-glucopyranoside) (Dp3acetylG) and cyanidin 3- O-(2"-O-galloyl-galactopyranoside)-5-O-rhamnoside (Cy3galloylGa5Rh), one chalcone: chalcononaringenin 2'-O-galactoside (Chal2'Ga) and twelve flavonols: myricetin 7-O-rhamnosyl-(1 → 2)-rhamnoside (My7RhRh), quercetin 7-O-galactosyl-(1 → 2)-rhamnoside (Qu7GaRh), quercetin 7-O-galactoside (Qu7Ga), kaempferol 7-O-galactosyl-(1 → 2)-rhamnoside (Km7GaRh), myricetin 3-O-galactoside (My3Ga), kaempferol 7-O-galloylgalactosyl-(1 → 2)-rhamnoside (Km7galloylGaRh), myricetin 3-O-galloylrhamnoside (My3galloylRh), kaempferol 3-O-galactoside (Km3Ga), isorhamnetin 7-O-galactoside (Is7Ga), isorhamnetin 7-O-xyloside (Is7Xy), kaempferol 3-O-(3"-acetylrhamnoside) (Km3-3"acetylRh) and quercetin 3-O-acetylgalactoside (Qu3acetylGa) were identified in the petals of tropic water lily for the first time. Meanwhile a multivariate analysis was used to explore the relationship between pigments and flower color. By comparing, the cultivars which were detected delphinidin 3-galactoside (Dp3Ga) presented amaranth, and detected delphinidin 3'-galactoside (Dp3'Ga) presented blue. However, the derivatives of delphinidin and cyanidin were more complicated in red group. No anthocyanins were detected within white and yellow group. At the same time a possible flavonoid biosynthesis pathway of tropical water lily was presumed putatively. These studies will help to elucidate the evolution mechanism on the formation of flower colors and provide theoretical basis for outcross breeding and developing health care products from this plant.  相似文献   

11.
Flavonoid glycosides and saponins from Astragalus shikokianus   总被引:1,自引:0,他引:1  
A new flavonol glycoside, kaempferol 3-O-alpha-L-rhamnopyranosyl -(1-->6)-[alpha-L-rhamnopyranosyl-(1-->2)]-beta-D-galactopyranosyl-7-O-a lpha-L-rhamnopyranoside, named astrasikokioside I, was isolated from aerial part of Astragalus shikokianus, together with two flavonol glycosides, kaempferol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-galactopyranosyl-7-O-alpha-L- rhamnopyranoside, robinin, and three triterpenoid glycosides, soyasaponin I, sophoraflavoside II and robinioside E.  相似文献   

12.
Twelve anthocyanins (1-12) were isolated from the red flowers of Camellia hongkongensis Seem. by chromatography using open columns. Their structures were elucidated on the basis of spectroscopic analyses, that is, proton-nuclear magnetic resonance, carbon 13-nuclear magnetic resonance, heteronuclear multiple quantum correlation, heteronuclear multiple bond correlation, high resolution electrospray ionization mass and ultraviolet visible spectroscopies. Out of these anthocyanins, a novel acylated anthocyanin, cyanidin 3-O-(6-O-(Z)-p-coumaroyl)-β-galactopyranoside (6), two known acylated anthocyanins, cyanidin 3-O-(6-O-(E)-p-coumaroyl)-β-galactopyranoside (7) and cyanidin 3-O-(6-O-(E)-caffeoyl)-β-galactopyranoside (8), and three known delphinidin glycosides (10-12) were for the first time isolated from the genus Camellia. Furthermore, pigment components in C. japonica L., C. chekiangoleosa Hu and C. semiserrata Chi were studied.The results indicated that the distribution of anthocyanins was differed among these species. Delphinidin glycoside was only detected in the flowers of C. hongkongensis, which is a special and important species in the section Camellia. Based on the characterization of anthocyanins in the section Camellia species, there is a close relationship among these species,and C. hongkongensis might be an important parent for creating new cultivars with bluish flower color.  相似文献   

13.
Malonylated flavonol glycosides from the petals of Clitoria ternatea   总被引:2,自引:0,他引:2  
Kazuma K  Noda N  Suzuki M 《Phytochemistry》2003,62(2):229-237
Three flavonol glycosides, kaempferol 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, quercetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, and myricetin 3-O-(2",6"-di-O-alpha-rhamnosyl)-beta-glucoside were isolated from the petals of Clitoria ternatea cv. Double Blue, together with eleven known flavonol glycosides. Their structures were identified using UV, MS, and NMR spectroscopy. They were characterized as kaempferol and quercetin 3-(2(G)- rhamnosylrutinoside)s, kaempferol, quercetin, and myricetin 3-neohesperidosides, 3-rutinosides, and 3-glucosides in the same tissue. In addition, the presence of myricetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside was inferred from LC/MS/MS data for crude petal extracts. The flavonol compounds identified in the petals of C. ternatea differed from those reported in previous studies.  相似文献   

14.
Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues.  相似文献   

15.
The crude malonyltransferase from the petals of Clitoria ternatea was characterized enzymatically to investigate its role on the biosynthetic pathways of anthocyanins and flavonol glycosides. In C. ternatea, a blue flower cultivars (DB) and mauve flower variety (WM) accumulate polyacylated anthocyanins (ternatins) and delphinidin 3-O-(6'-O-malonyl)-beta-glucoside which is one of the precursors of ternatins, respectively. Moreover, WM accumulates minor delphinidin glycosides - 3-O-beta-glucoside, 3-O-(2'-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2'-O-alpha-rhamnosyl-6'-O-malonyl)-beta-glucoside of delphinidin. These glycosidic patterns for minor anthocyanins in WM are also found among the minor flavonol glycosides in all the varieties including a white flower variety (WW) although the major flavonol glycosides are 3-O-(2'-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(6'-O-alpha-rhamnosyl)-beta-glucoside, 3-O-(2',6'-di-O-alpha-rhamnosyl)-beta-glucoside of kaempferol, quercetin, and myricetin. How do the enzymatic characteristics affect the variety of glycosidic patterns in the flavonoid glycoside biosynthesis among these varieties? While the enzyme from DB highly preferred delphinidin 3-O-beta-glucoside in the presence of malonyl-CoA, it also has a preference for other anthocyanidin 3-O-beta-glucosides. It could use flavonol 3-O-beta-glucosides in much lower specific activities than anthocyanins; however, it could not utilize 3-O-(2'-O-alpha-rhamnosyl)-beta-glucosides of anthocyanins and flavonols, and 3,3'-di- and 3,3',5'-tri-O-beta-glucoside of delphinidin - other possible precursors in ternatins biosynthesis. It highly preferred malonyl-CoA as an acyl donor in the presence of delphinidin 3-O-beta-glucoside. The crude enzymes prepared from WM and WW had the same enzymatic characteristics. These results suggested that 3-O-(2'-O-alpha-rhamnosyl-6'-O-malonyl)-beta-glucosides of flavonoids were synthesized via 3-O-(6'-O-malonyl)-beta-glucosides rather than via 3-O-(2'-O-alpha-rhamnosyl)-beta-glucosides, and that malonylation proceeded prior to glucosylation at the B-ring of delphinidin in the early biosynthetic steps towards ternatins. It seemed that the substrate specificities largely affected the difference in the accumulated amount of malonylated glycosides between anthocyanins and flavonols although they are not simply proportional to the accumulation ratio. This enzyme might join in the production of both malonylanthocyanins and flavonol malonylglycosides as a result of broad substrate specificities towards flavonoid 3-O-beta-glucosides.  相似文献   

16.
A phytochemical investigation of the extracts obtained from bulbs of leek. Allium porrum L. has led to the isolation of five flavonoid glycosides based on the kaempferol aglycone. Two of them are new compounds and have been identified as kaempferol 3-O-[2-O-(trans-3-methoxy-4-hydroxycinnamoyl)-beta-D-galactopyranosyl]-(1-->4)-O-beta-D-glucopyranoside, and kaempferol 3-O-[2-O-(trans-3-methoxy-4-hydroxycinnamoyl)-beta-D-glucopyranosyl]-(1-->6)-O-beta-D-glucopyranoside, on the basis of spectroscopic methods, including 2D NMR. The isolated compounds have been evaluated for their human platelet anti-aggregation activity.  相似文献   

17.
The rhizomes of Zingiber spectabile yielded a new dimeric flavonol glycoside for which the name kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside-(I-6,II-8)-kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside; spectaflavoside A (1) was proposed, along with kaempferol and its four acetylrhamnosides (2-6), demethoxycurcumin (7) and curcumin (8). The structure of spectaflavoside A was elucidated by spectroscopic methods including, 1D and 2D NMR techniques. This is the first report on the occurrence of a dimeric flavonol glycoside in the Zingiberaceae and the second in nature. Spectaflavoside A was found to be a potent iron chelating agent.  相似文献   

18.
Two flavonol glycosides from seeds of Camellia sinensis.   总被引:5,自引:0,他引:5  
Two novel flavonol triglycosides, camelliaside A and B, have been isolated from seeds of Camellia sinensis. The structures were determined to be kaempferol 3-O-[2-O-beta-D- galactopyranosyl-6-O-alpha-L-rhamnopyranosyl]-beta-D-glucopyranoside and kaempferol 3-O-[2-O-beta- D-xylopyranosyl-6-O-alpha-L-rhamnopyranosyl]-beta-D-glucopyranoside on the basis of spectroscopic, chemical and enzymatic studies. These types of interglycosidic linkages, Gal(1----2)[Rha(1----6)]Glc and Xyl(1----2)[Rha(1----6)]Glc, have not been reported previously in flavone and flavonol glycosides.  相似文献   

19.
Two anthocyanins were isolated from the highly pigmented callus derived from the storage root of purple sweet potato (Ipomoea batatas L.) cultivar 'Ayamurasaki'. One was identified as cyanidin 3-O-sophoroside-5-O-glucoside, and the other as cyanidin 3-O-(2-O-(6-O-(E)-p-coumaroyl-beta-D-glucopyranosyl)-beta-D-glucop yranoside)-5-O-beta-D-glucopyranoside, by chemical and spectroscopic analysis.  相似文献   

20.
From the fruits of Sambucus canadensis four anthocyanin glycosides have been isolated by successive application of an ion-exchange resin, droplet-counter chromatography and gel filtration. The structure of the novel, major (69.8%) pigment, cyanidin 3-O-[6-O-(E-p-coumaroyl-2-O-(beta-D-xylopyranosyl)-beta-D- glucopyranoside]-5-O-beta-D-glucopyranoside, was determined by means of chemical degradation, chromatography and spectroscopy, especially homo- and heteronuclear two-dimensional NMR techniques. The other anthocyanins were identified as cyanidin 3-sambubioside-5-glucoside (22.7%), cyanidin 3-sambubioside (2.3%) and cyanidin 3-glucoside (2.1%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号