首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
CRP2 is an autonomous actin-binding protein   总被引:4,自引:0,他引:4  
Grubinger M  Gimona M 《FEBS letters》2004,557(1-3):88-92
  相似文献   

5.
Members of the cysteine-rich protein (CRP) family are LIM domain proteins that have been implicated in muscle differentiation. One strategy for defining the mechanism by which CRPs potentiate myogenesis is to characterize the repertoire of CRP binding partners. In order to identify proteins that interact with CRP1, a prominent protein in fibroblasts and smooth muscle cells, we subjected an avian smooth muscle extract to affinity chromatography on a CRP1 column. A 100-kD protein bound to the CRP1 column and could be eluted with a high salt buffer; Western immunoblot analysis confirmed that the 100-kD protein is α-actinin. We have shown that the CRP1–α-actinin interaction is direct, specific, and saturable in both solution and solid-phase binding assays. The Kd for the CRP1–α-actinin interaction is 1.8 ± 0.3 μM. The results of the in vitro protein binding studies are supported by double-label indirect immunofluorescence experiments that demonstrate a colocalization of CRP1 and α-actinin along the actin stress fibers of CEF and smooth muscle cells. Moreover, we have shown that α-actinin coimmunoprecipitates with CRP1 from a detergent extract of smooth muscle cells. By in vitro domain mapping studies, we have determined that CRP1 associates with the 27-kD actin–binding domain of α-actinin. In reciprocal mapping studies, we showed that α-actinin interacts with CRP1-LIM1, a deletion fragment that contains the NH2-terminal 107 amino acids (aa) of CRP1. To determine whether the α-actinin binding domain of CRP1 would localize to the actin cytoskeleton in living cells, expression constructs encoding epitope-tagged full-length CRP1, CRP1-LIM1(aa 1-107), or CRP1-LIM2 (aa 108-192) were microinjected into cells. By indirect immunofluorescence, we have determined that full-length CRP1 and CRP1-LIM1 localize along the actin stress fibers whereas CRP1-LIM2 fails to associate with the cytoskeleton. Collectively these data demonstrate that the NH2-terminal part of CRP1 that contains the α-actinin–binding site is sufficient to localize CRP1 to the actin cytoskeleton. The association of CRP1 with α-actinin may be critical for its role in muscle differentiation.  相似文献   

6.
Cysteine-rich protein 2 (CRP2) is a cofactor for smooth muscle cell (SMC) differentiation. Here, we examined the mechanism of CRP2 distribution dynamics during SMC differentiation. CRP2 protein directly associated with F-actin through its N-terminal LIM domain and Gly-rich region, as determined by ELISA. In undifferentiated cells that contain few actin stress fibers, CRP2 was broadly distributed throughout the whole cell, including the nucleus. After induction of SMC differentiation, CRP2 localized to actin stress fibers as they formed. The stress fiber-localized CRP2 entered the nucleus because of induced actin depolymerization. These CRP2 dynamics were reproduced by in silico simulation. CRP2 localization dynamics, which affect CRP2 function, are regulated by the formation of actin stress fibers in conjunction with SMC differentiation.  相似文献   

7.
8.
Correct delineation of the hierarchy of cardiac progenitors is a key step to understanding heart development, and will pave the way for future use of cardiac progenitors in the treatment of heart disease. Multipotent Nkx2-5 and Isl1 cardiac progenitors contribute to cardiomyocyte, smooth muscle, and endothelial lineages, which constitute the major lineages of the heart. Recently, progenitors located within the proepicardium and epicardium were reported to differentiate into cardiomyocytes, as well as smooth muscle and endothelial cells. However, the relationship of these proepicardial progenitors to the previously described Nkx2-5 and Isl1 cardiac progenitors is incompletely understood. To address this question, we performed in vivo Cre-loxP-based lineage tracing. Both Nkx2-5- and Isl1-expressing progenitors contributed to the proepicardium and expressed Wt1 and Tbx18, markers of proepicardial progenitor cells. Interestingly, Nkx2-5 knockout resulted in abnormal proepicardial development and decreased expression of Wt1, suggesting a functional role for Nkx2-5 in proepicardium formation. Taken together, these results suggest that Nkx2-5 and/or Isl1 cardiac progenitors contribute to proepicardium during heart development.  相似文献   

9.
10.
We have used a subtractive method to clone novel messages enriched in the heart. Here we show that one such message, bves (blood vessel/epicardial substance) is a novel protein that is highly conserved between chicken and mouse. The bves message is detected at high levels in early chick hearts. Using anti-Bves antibodies, we show expression in cells of the proepicardial organ, migrating epicardium, epicardial-derived mesenchyme, and smooth muscle of the developing intracardiac arterial system, including the coronary arteries. Our data suggest that Bves is an early marker of developing vascular smooth muscle cells. In addition, the expression pattern of Bves protein reveals the patterning of intracardiac vascular smooth muscle and possible insights into the cellular regulation of smooth muscle differentiation during vasculogenesis.  相似文献   

11.
12.
13.
14.
We aimed to determine if and how endothelial cells (EC) recruit precursors of smooth muscle cells and pericytes and induce their differentiation during vessel formation. Multipotent embryonic 10T1/2 cells were used as presumptive mural cell precursors. In an under-agarose coculture, EC induced migration of 10T1/2 cells via platelet-derived growth factor BB. 10T1/2 cells in coculture with EC changed from polygonal to spindle-shaped, reminiscent of smooth muscle cells in culture. Immunohistochemical and Western blot analyses were used to examine the expression of smooth muscle (SM)-specific markers in 10T1/2 cells cultured in the absence and presence of EC. SM-myosin, SM22α, and calponin proteins were undetectable in 10T1/2 cells cultured alone; however, expression of all three SM-specific proteins was significantly induced in 10T1/2 cells cocultured with EC. Treatment of 10T1/2 cells with TGF-β induced phenotypic changes and changes in SM markers similar to those seen in the cocultures. Neutralization of TGF-β in the cocultures blocked expression of the SM markers and the shape change. To assess the ability of 10T1/2 cells to contribute to the developing vessel wall in vivo, prelabeled 10T1/2 cells were grown in a collagen matrix and implanted subcutaneously into mice. The fluorescently marked cells became incorporated into the medial layer of developing vessels where they expressed SM markers. These in vitro and in vivo observations shed light on the cell–cell interactions that occur during vessel development, as well as in pathologies in which developmental processes are recapitulated.  相似文献   

15.
16.
17.
The importance of interleukin 6 (IL-6)-related cytokines in cardiac homeostasis has been studied extensively; however, little is known about their biological significance in cardiac stem cells. Here we describe that leukemia inhibitory factor (LIF), a member of IL-6-related cytokines, activated STAT3 and ERK1/2 in cardiac Sca-1+ stem cells. LIF stimulation resulted in the induction of endothelial cell-specific genes, including VE-cadherin, Flk-1, and CD31, whereas neither smooth muscle nor cardiac muscle marker genes such as GATA4, GATA6, Nkx-2.5, and calponin were up-regulated. Immunocytochemical examination showed that about 25% of total cells were positively stained with anti-CD31 antibody 14 days after LIF stimulation. Immunofluorescent microscopic analyses identified the Sca-1+ cells that were also positively stained with anti-von Willebrand factor antibody, indicating the differentiating process of Sca-1+ cells into the endothelial cells. IL-6, which did not activate STAT3 and ERK1/2, failed to induce the differentiation of cardiac stem cells into the endothelial cells. In cardiac stem cells, the transduction with dominant negative STAT3 abrogated the LIF-induced endothelial differentiation. And the inhibition of ERK1/2 with the MEK1/2 inhibitor U0126 also prevented the differentiation of Sca-1+ cells into endothelial cells. Thus, both STAT3 and ERK1/2 are required for LIF-mediated endothelial differentiation in cardiac stem cells. Collectively, it is proposed that LIF regulates the commitment of cardiac stem cells into the endothelial cell lineage, contributing to neovascularization in the process of tissue remodeling and/or regeneration.  相似文献   

18.
The pokeweed mitogen (PWM)-induced generation of polyclonal immunoglobulin-secreting cells (ISC), as measured by reverse hemolytic plaque formation of protein A-coated sheep E by human blood mononuclear cells, was inhibited by both purified human C-reactive protein (CRP) and CRP-C-polysaccharide (CRP-CPS) complexes. CRP and CRP-CPS mediated the suppression by binding and activating monocytes and T cells with IgG Fc receptors. The extent of suppression was dependent on CRP concentration and the CRP/CPS ratio and was similar to that obtained with IgG immune complexes. In contrast, CRP did not alter the number of ISC formed in response to the relatively T-independent polyclonal activator, protein A-bearing staphylococci. Suppression of ISC formation was most likely confined to events associated with the terminal stages of B-cell differentiation since no effect of CRP or CRP-CPS on the blastogenic response to polyclonal B-cell activators (PBA) was detected. These findings indicate that the acute phase reactant CRP has the potential to modulate antibody responses during the course of an inflammatory response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号