首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
The simultaneous analysis of multiple genomic loci is a powerful approach to studying the effects of population history and natural selection on patterns of genetic variation of a species. By surveying nucleotide sequence polymorphism at 334 randomly distributed genomic regions in 12 accessions of Arabidopsis thaliana, we examined whether a standard neutral model of nucleotide sequence polymorphism is consistent with observed data. The average nucleotide diversity was 0.0071 for total sites and 0.0083 for silent sites. Although levels of diversity are variable among loci, no correlation with local recombination rate was observed, but polymorphism levels were correlated for physically linked loci (<250 kb). We found that observed distributions of Tajima's D- and D/D(min)- and of Fu and Li's D-, D*- and F-, F*-statistics differed significantly from the expected distributions under a standard neutral model due to an excess of rare polymorphisms and high variances. Observed and expected distributions of Fay and Wu's H were not different, suggesting that demographic processes and not selection at multiple loci are responsible for the deviation from a neutral model. Maximum-likelihood comparisons of alternative demographic models like logistic population growth, glacial refugia, or past bottlenecks did not produce parameter estimates that were more consistent with observed patterns. However, exclusion of highly polymorphic "outlier loci" resulted in a fit to the logistic growth model. Various tests of neutrality revealed a set of candidate loci that may evolve under selection.  相似文献   

2.
Payseur BA  Nachman MW 《Gene》2002,300(1-2):31-42
Theoretical and empirical work indicates that patterns of neutral polymorphism can be affected by linked, selected mutations. Under background selection, deleterious mutations removed from a population by purifying selection cause a reduction in linked neutral diversity. Under genetic hitchhiking, the rise in frequency and fixation of beneficial mutations also reduces the level of linked neutral polymorphism. Here we review the evidence that levels of neutral polymorphism in humans are affected by selection at linked sites. We then discuss four approaches for distinguishing between background selection and genetic hitchhiking based on (i) the relationship between polymorphism level and recombination rate for neutral loci with high mutation rates, (ii) relative levels of variation on the X chromosome and the autosomes, (iii) the frequency distribution of neutral polymorphisms, and (iv) population-specific patterns of genetic variation. Although the evidence for selection at linked sites in humans is clear, current methods and data do not allow us to clearly assess the relative importance of background selection and genetic hitchhiking in humans. These results contrast with those obtained for Drosophila, where the signals of positive selection are stronger.  相似文献   

3.
Bachtrog D 《Genetics》2008,179(3):1513-1525
Y chromosomes originate from ordinary autosomes and degenerate by accumulating deleterious mutations. This accumulation results from a lack of recombination on the Y and is driven by interference among deleterious mutations (Muller's ratchet and background selection) and the fixation of beneficial alleles (genetic hitchhiking). Here I show that the relative importance of these processes is expected to vary over the course of Y chromosome evolution due to changes in the number of active genes. The dominant mode of degeneration on a newly formed gene-rich Y chromosome is expected to be Muller's ratchet and/or background selection due to the large numbers of deleterious mutations arising in active genes. However, the relative importance of these modes of degeneration declines rapidly as active genes are lost. In contrast, the rate of degeneration due to hitchhiking is predicted to be highest on Y chromosomes containing an intermediate number of active genes. The temporal dynamics of these processes imply that a gradual restriction of recombination, as inferred in mammals, will increase the importance of genetic hitchhiking relative to Muller's ratchet and background selection.  相似文献   

4.
Adaptation to novel environments arises either from new beneficial mutations or by utilizing pre‐existing genetic variation. When standing variation is used as the source of new adaptation, fitness effects of alleles may be altered through an environmental change. Alternatively, changes in epistatic genetic backgrounds may convert formerly neutral mutations into beneficial alleles in the new genetic background. By extending the coalescent theory to describe the genealogical histories of two interacting loci, I here investigated the hitchhiking effect of epistatic selection on the amount and pattern of sequence diversity at the linked neutral regions. Assuming a specific form of epistasis between two new mutations that are independently neutral, but together form a coadapted haplotype, I demonstrate that the footprints of epistatic selection differ markedly between the interacting loci depending on the order and relative timing of the two mutational events, even though both mutations are equally essential for the formation of an adaptive gene combination. Our results imply that even when neutrality tests could detect just a single instance of adaptive substitution, there may, in fact, be numerous other hidden mutations that are left undetected, but still play indispensable roles in the evolution of a new adaptation. We expect that the integration of the coalescent framework into the general theory of polygenic inheritance would clarify the connection between factors driving phenotypic evolution and their consequences on underlying DNA sequence changes, which should further illuminate the evolutionary foundation of coadapted systems.  相似文献   

5.
Kim Y  Stephan W 《Genetics》2000,155(3):1415-1427
Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleterious mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral variation, using a three-locus model in which each locus is subjected to either deleterious, favorable, or neutral mutations. Average heterozygosity is measured by simulations (1) at the stationary state under the assumption of recurrent hitchhiking events and (2) as a transient level after a single hitchhiking event. The simulation results are compared to theoretical predictions. It is shown that known analytical solutions describing the hitchhiking effect without background selection can be modified such that they accurately predict the joint effects of hitchhiking and background on linked, neutral variation. Generalization of these results to a more appropriate multilocus model (such that background selection can occur at multiple sites) suggests that, in regions of very low recombination rates, stationary levels of nucleotide diversity are primarily determined by hitchhiking, whereas in regions of high recombination, background selection is the dominant force. The implications of these results on the identification and estimation of the relevant parameters of the model are discussed.  相似文献   

6.
Antagonistically selected alleles‐–those with opposing fitness effects between sexes, environments, or fitness components‐–represent an important component of additive genetic variance in fitness‐related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate‐frequency alleles disproportionately contribute to genetic variance of life‐history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus nonantagonistic (e.g., overdominant and frequency‐dependent selection) processes. We show that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, nonantagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection.  相似文献   

7.
Andolfatto P  Przeworski M 《Genetics》2001,158(2):657-665
A correlation between diversity levels and rates of recombination is predicted both by models of positive selection, such as hitchhiking associated with the rapid fixation of advantageous mutations, and by models of purifying selection against strongly deleterious mutations (commonly referred to as "background selection"). With parameter values appropriate for Drosophila populations, only the first class of models predicts a marked skew in the frequency spectrum of linked neutral variants, relative to a neutral model. Here, we consider 29 loci scattered throughout the Drosophila melanogaster genome. We show that, in African populations, a summary of the frequency spectrum of polymorphic mutations is positively correlated with the meiotic rate of crossing over. This pattern is demonstrated to be unlikely under a model of background selection. Models of weakly deleterious selection are not expected to produce both the observed correlation and the extent to which nucleotide diversity is reduced in regions of low (but nonzero) recombination. Thus, of existing models, hitchhiking due to the recurrent fixation of advantageous variants is the most plausible explanation for the data.  相似文献   

8.
Several evolutionary models of linked selection (e.g., genetic hitchhiking, background selection, and random environment) predict a reduction in polymorphism relative to divergence in genomic regions where the rate of crossing over per physical distance is restricted. We tested this prediction near the telomere of the Drosophila melanogaster and D. simulans X chromosome at two loci, erect wing (ewg) and suppressor of sable [su(s)]. Consistent with this prediction, polymorphism is reduced at both loci, while divergence is normal. The reduction is greater at ewg, the more distal of the two regions. Two models can be discriminated by comparing the observed site frequency spectra with those predicted by the models. The hitchhiking model predicts a skew toward rare variants in a sample, while the spectra under the background-selection model are similar to those of the neutral model of molecular evolution. Statistical tests of the fit to the predictions of these models require many sampled alleles and segregating sites. Thus we used SSCP and stratified DNA sequencing to cover a large number of randomly sampled alleles (approximately 50) from each of three populations. The result is a clear trend toward negative values of Tajima's D, indicating an excess of rare variants at ewg, the more distal of the two loci. One fixed difference among the populations and high FST values indicate strong population subdivision among the three populations at ewg. These results indicate genetic hitchhiking at ewg, in particular, geographically localized hitchhiking events within Africa. The reduction of polymorphism at su(s) combined with the excess of high-frequency variants in D. simulans is inconsistent with the hitchhiking and background-selection models.  相似文献   

9.
Haldane's sieve and adaptation from the standing genetic variation   总被引:8,自引:0,他引:8  
Orr HA  Betancourt AJ 《Genetics》2001,157(2):875-884
We consider populations that adapt to a sudden environmental change by fixing alleles found at mutation-selection balance. In particular, we calculate probabilities of fixation for previously deleterious alleles, ignoring the input of new mutations. We find that "Haldane's sieve"--the bias against the establishment of recessive beneficial mutations--does not hold under these conditions. Instead probabilities of fixation are generally independent of dominance. We show that this result is robust to patterns of sex expression for both X-linked and autosomal loci. We further show that adaptive evolution is invariably slower at X-linked than autosomal loci when evolution begins from mutation-selection balance. This result differs from that obtained when adaptation uses new mutations, a finding that may have some bearing on recent attempts to distinguish between hitchhiking and background selection by contrasting the molecular population genetics of X-linked vs. autosomal loci. Last, we suggest a test to determine whether adaptation used new mutations or previously deleterious alleles from the standing genetic variation.  相似文献   

10.
Faure B  Bierne N  Tanguy A  Bonhomme F  Jollivet D 《Gene》2007,406(1-2):99-107
A multilocus analysis was initiated in order to infer the general effect of demography and the indirect effect of positive selection on some chromosome segments in Bathymodiolus. Mussels of the genus Bathymodiolus inhabit the very hostile, fragmented and variable environment of deep-sea hydrothermal vents which is thought to cause recurrent population bottlenecks via extinction/colonisation processes and adaptation to new environmental conditions. In the course of this work we discovered that the assumption of neutrality of non-coding polymorphisms usually made in genome scan experiments was likely to be violated at one of the loci we analysed. The direct effect of slight purifying selection on non-coding polymorphisms shares many resemblances with the indirect effect of positive selection through genetic hitchhiking. Combining polymorphism with divergence data for several closely related species allowed us to obtain different expectations for the direct effect of negative selection and the indirect effect of positive selection. We observed a strong excess of rare non-coding polymorphisms at the second intron of the EF1alpha gene in the two species Bathymodiolus azoricus and Bathymodiolus thermophilus, while two other loci, the mitochondrial COI gene and an intron of the Lysozyme gene, did not exhibit such a deviation. In addition, the divergence rate of the EF1alpha intron was estimated to be unexpectedly low when calibrated using the closure of the Panama Isthmus that interrupted gene flow between the two species. The polymorphism to divergence ratio was similar to the one observed for the other two loci, in accordance to the hypothesis of purifying selection. We conclude that slight purifying selection is likely to act on polymorphic intronic mutations of the EF1alpha second intron and discuss the possible relationship with the specific biology of Bathymodiolus mussels.  相似文献   

11.
The Hitchhiking Effect on the Site Frequency Spectrum of DNA Polymorphisms   总被引:32,自引:4,他引:28  
The level of DNA sequence variation is reduced in regions of the Drosophila melanogaster genome where the rate of crossing over per physical distance is also reduced. This observation has been interpreted as support for the simple model of genetic hitchhiking, in which directional selection on rare variants, e.g., newly arising advantageous mutants, sweeps linked neutral alleles to fixation, thus eliminating polymorphisms near the selected site. However, the frequency spectra of segregating sites of several loci from some populations exhibiting reduced levels of nucleotide diversity and reduced numbers of segregating sites did not appear different from what would be expected under a neutral equilibrium model. Specifically, a skew toward an excess of rare sites was not observed in these samples, as measured by Tajima's D. Because this skew was predicted by a simple hitchhiking model, yet it had never been expressed quantitatively and compared directly to DNA polymorphism data, this paper investigates the hitchhiking effect on the site frequency spectrum, as measured by Tajima's D and several other statistics, using a computer simulation model based on the coalescent process and recurrent hitchhiking events. The results presented here demonstrate that under the simple hitchhiking model (1) the expected value of Tajima's D is large and negative (indicating a skew toward rare variants), (2) that Tajima's test has reasonable power to detect a skew in the frequency spectrum for parameters comparable to those from actual data sets, and (3) that the Tajima's Ds observed in several data sets are very unlikely to have been the result of simple hitchhiking. Consequently, the simple hitchhiking model is not a sufficient explanation for the DNA polymorphism at those loci exhibiting a decreased number of segregating sites yet not exhibiting a skew in the frequency spectrum.  相似文献   

12.
E. Arnason 《Genetics》1991,129(1):145-168
A perturbation-reperturbation tests selective neutrality of 100/100/100/100/100 and 106/100/100/100/100, the two most common alleles at the highly polymorphic X-linked locus Esterase-5 in Drosophila pseudoobscura. A total of 22 replicate populations are set up in cages, 11 start at a high frequency of 76% (U) and 11 at a low frequency of 21% (N) of the 106 allele. Allele frequencies change directionally and decrease in both U and N populations as groups and reach equilibria of 60 and 14%, respectively, after 200-300 days. These changes suggest natural selection. A hypothesis of balancing selection accounts for the pattern and predicts a dynamic equilibrium. A rival neutral hypothesis accounts for the pattern equally well by postulating hitchhiking and breakup of linkage leaving the Est-5 variants to drift at neutral equilibria. A reperturbation of allele frequencies in each population, creating 22 additional reperturbed populations EN and EU, with the original populations as controls, directly addresses the question of balancing selection or hitchhiking and breakup of linkage effects. Allele frequencies do not change directionally among the reperturbed populations as a group. The hypothesis of balancing selection is rejected in favor of the hypothesis of initial hitchhiking and dissipated linkage effects. The power of the experimental design to detect selection is studied by simulation. Within the limits of power set by the design, it is concluded that the 100 and 106 are iso-fitness alleles of Est-5 under the environmental conditions of the laboratory populations. The requirements of a method of perturbation and reperturbation are discussed.  相似文献   

13.
C A Wise  M Sraml  S Easteal 《Genetics》1998,148(1):409-421
To test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution, nucleotide sequences were determined for the 1041 bp of the NADH dehydrogenase subunit 2 (ND2) gene in 20 geographically diverse humans and 20 common chimpanzees. Contingency tests of neutrality were performed using four mutational categories for the ND2 molecule: synonymous and nonsynonymous mutations in the transmembrane regions, and synonymous and nonsynonymous mutations in the surface regions. The following three topological mutational categories were also used: intraspecific tips, intraspecific interiors, and interspecific fixed differences. The analyses reveal a significantly greater number of nonsynonymous polymorphisms within human transmembrane regions than expected based on interspecific comparisons, and they are inconsistent with a neutral equilibrium model. This pattern of excess nonsynonymous polymorphism is not seen within chimpanzees. Statistical tests of neutrality, such as TAJIMA''s D test, and the D and F tests proposed by FU and LI, indicate an excess of low frequency polymorphisms in the human data, but not in the chimpanzee data. This is consistent with recent directional selection, a population bottleneck or background selection of slightly deleterious mutations in human mtDNA samples. The analyses further support the idea that mitochondrial genome evolution is governed by selective forces that have the potential to affect its use as a "neutral" marker in evolutionary and population genetic studies.  相似文献   

14.
The neutral theory of molecular evolution predicts that the ratio of polymorphisms to fixed differences should be fairly uniform across a region of DNA sequence. Significant heterogeneity in this ratio can indicate the effects of balancing selection, selective sweeps, mildly deleterious mutations, or background selection. Comparing an observed heterogeneity statistic with simulations of the heterogeneity resulting from random phylogenetic and sampling variation provides a test of the statistical significance of the observed pattern. When simulated data sets containing heterogeneity in the polymorphism-to-divergence ratio are examined, different statistics are most powerful for detecting different patterns of heterogeneity. The number of runs is most powerful for detecting patterns containing several peaks of polymorphism; the Kolmogorov-Smirnov statistic is most powerful for detecting patterns in which one end of the gene has high polymorphism and the other end has low polymorphism; and a newly developed statistic, the mean sliding G statistic, is most powerful for detecting patterns containing one or two peaks of polymorphism with reduced polymorphism on either side. Nine out of 27 genes from the Drosophila melanogaster subgroup exhibit heterogeneity that is significant under at least one of these three tests, with five of the nine remaining significant after a correction for multiple comparisons, suggesting that detectable evidence for the effects of some kind of selection is fairly common.   相似文献   

15.
Using exchangeability as a statistical analog of neutrality, we derive a generalized sampling distribution for neutral alleles. The distribution depends upon a parameter that determines the underlying marginal distribution of the number of copies of a neutral allele and that can range from zero to infinity. The sampling model of Ewens (1972) is a special case characterized by an extreme value (0) of this parameter. Two other special cases are considered, one of which seems to be applicable to populations with a structure like that of the Yanomama Indians of South America. We then investigate the expected frequency spectra under these three special cases and discover that all three models yield a broad range of possible spectra with overlap between the special cases. We finally show that Ewens' sampling model cannot be used to construct tests of neutrality versus selection tending to maintain polymorphisms, but it can be used to construct tests of directional selection versus neutrality plus selection tending to yield polymorphic states.  相似文献   

16.
Y. Michalakis  M. Veuille 《Genetics》1996,143(4):1713-1725
Eleven genes distributed along the Drosophila melanogaster chromosome 2 and showing exonic tandem repeats of glutamine codons (CAG or CAA) were surveyed for length variation in a sample of four European and African populations. Only one gene was monomorphic. Eight genes were polymorphic in all populations, with a total number of alleles varying between five and 12 for 120 chromosomes. The average heterozygozity per locus and population was 0.41. Selective neutrality in length variation could not be rejected under the assumptions of the infinite allele model. Significant population subdivision was found though no geographical pattern emerged, all populations being equally different. Significant linkage disequilibrium was found in four out of seven cases where the genetic distance between loci was <1 cM and was negligible when the distance was larger. There is evidence that these associations were established after the populations separated. An unexpected result was that variation at each locus was independent of the coefficient of exchange, although the latter ranged from zero to the relatively high value of 6.7%. This would indicate that background selection and selective hitchhiking, which are thought to affect levels of nucleotide substitution polymorphism, have no effect on trinucleotide repeat variation.  相似文献   

17.
Mäkinen HS  Shikano T  Cano JM  Merilä J 《Genetics》2008,178(1):453-465
Identification of genes and genomic regions under directional natural selection has become one of the major goals in evolutionary genetics, but relatively little work to this end has been done by applying hitchhiking mapping to wild populations. Hitchhiking mapping starts from a genome scan using a randomly spaced set of molecular markers followed by a fine-scale analysis in the flanking regions of the candidate regions under selection. We used the hitchhiking mapping approach to narrow down a selective sweep in the genomic region flanking a candidate locus (Stn90) in chromosome VIII in the three-spined stickleback (Gasterosteus aculeatus). Twenty-four microsatellite markers were screened in an approximately 800-kb region around the candidate locus in three marine and four freshwater populations. The patterns of genetic diversity and differentiation in the candidate region were compared to those of a putatively neutral set of markers. The Bayesian FST-test indicated an elevated genetic differentiation, deviating significantly from neutral expectations, at a continuous region of approximately 20 kb upstream from the candidate locus. Furthermore, a method developed for an array of microsatellite markers rejected neutrality in a region of approximately 90 kb flanking the candidate locus supporting the selective sweep hypothesis. Likewise, the genomewide pattern of genetic diversity differed from the candidate region in a bottleneck analysis suggesting that selection, rather than demography, explains the reduced genetic diversity at the candidate interval. The neutrality tests suggest that the selective sweep had occurred mainly in the Lake Pulmanki population, but the results from bottleneck analyses indicate that selection might have operated in other populations as well. These results suggest that the narrow interval around locus Stn90 has likely been under directional selection, but the region contains several predicted genes, each of which can be the actual targets of selection. Understanding of the functional significance of this genomic region in an ecological context will require a more detailed sequence analysis.  相似文献   

18.
Various tests of the hypothesis of selective neutrality based on gene frequency are now available. These tests take as null hypothesis the concept of “strict neutrality”: all new mutants are required to be selectively identical to each other. For evolutionary questions, however, (as opposed to those of genetic polymorphism), a wider null hypothesis might be of interest. Since deleterious alleles have essentially no evolutionary importance, one might wish to test the null hypothesis that only neutral or deleterious mutations occur. The principal alternative to this hypothesis is that there exists heterotic selection of some form for some alleles tending to maintain a level of genetic polymorphism higher than that under neutrality. In this paper an assessment is made of the usefulness of a test of strict neutrality first proposed by this author (Ewens, 1972) as a test of null hypothesis of “generalized neutrality,” i.e. that only neutral or deleterious alleles occur. At the same time some remarks will be made about estimation of the fundamental parameter θ defining these processes.  相似文献   

19.
A critically important challenge in empirical population genetics is distinguishing neutral nonequilibrium processes from selective forces that produce similar patterns of variation. We here examine the extent to which linkage disequilibrium (i.e., nonrandom associations between markers) improves this discrimination. We show that patterns of linkage disequilibrium recently proposed to be unique to hitchhiking models are replicated under nonequilibrium neutral models. We also demonstrate that jointly considering spatial patterns of association among variants alongside the site-frequency spectrum is nonetheless of value. Through a comparison of models of equilibrium neutrality, nonequilibrium neutrality, equilibrium hitchhiking, nonequilibrium hitchhiking, and recurrent hitchhiking, we evaluate a linkage disequilibrium (LD) statistic (omega(max)) that appears to have power to identify regions recently shaped by positive selection. Most notably, for demographic parameters relevant to non-African populations of Drosophila melanogaster, we demonstrate that selected loci are distinguishable from neutral loci using this statistic.  相似文献   

20.
Chun S  Fay JC 《PLoS genetics》2011,7(8):e1002240
Deleterious mutations present a significant obstacle to adaptive evolution. Deleterious mutations can inhibit the spread of linked adaptive mutations through a population; conversely, adaptive substitutions can increase the frequency of linked deleterious mutations and even result in their fixation. To assess the impact of adaptive mutations on linked deleterious mutations, we examined the distribution of deleterious and neutral amino acid polymorphism in the human genome. Within genomic regions that show evidence of recent hitchhiking, we find fewer neutral but a similar number of deleterious SNPs compared to other genomic regions. The higher ratio of deleterious to neutral SNPs is consistent with simulated hitchhiking events and implies that positive selection eliminates some deleterious alleles and increases the frequency of others. The distribution of disease-associated alleles is also altered in hitchhiking regions. Disease alleles within hitchhiking regions have been associated with auto-immune disorders, metabolic diseases, cancers, and mental disorders. Our results suggest that positive selection has had a significant impact on deleterious polymorphism and may be partly responsible for the high frequency of certain human disease alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号