首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of protein aggregates on the aggregation of d-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during unfolding and refolding has been studied. The aggregation of GAPDH follows a sigmoid course. The presence of protein aggregates increases the aggregation rate during unfolding and refolding of GAPDH but does not change the extent of aggregation and the final renaturation yield. It is suggested that protein aggregates function as seeds for aggregation via hydrophobic interaction with only GAPDH folding intermediates destined to aggregate and do not affect the distribution between pathways leading to correct folding and aggregation. Moreover, two different proteins do not interfere with each other during their simultaneous refolding together in a buffer. These findings provide insight into a mechanism by which cells prevent protein folding against the interference from aggregation of other proteins.  相似文献   

2.
The oxidative refolding of hen lysozyme has been studied by a variety of time-resolved biophysical methods in conjunction with analysis of folding intermediates using reverse-phase HPLC. In order to achieve this, refolding conditions were designed to reduce aggregation during the early stages of the folding reaction. A complex ensemble of relatively unstructured intermediates with on average two disulfide bonds is formed rapidly from the fully reduced protein after initiation of folding. Following structural collapse, the majority of molecules slowly form the four-disulfide-containing fully native protein via rearrangement of a highly native-like, kinetically trapped intermediate, des-[76-94], although a significant population (approximately 30%) appears to fold more quickly via other three-disulfide intermediates. The folding catalyst PDI increases dramatically both yields and rates of lysozyme refolding, largely by facilitating the conversion of des-[76-94] to the native state. This suggests that acceleration of the folding rate may be an important factor in avoiding aggregation in the intracellular environment.  相似文献   

3.
M Ikeguchi  K Kuwajima  M Mitani  S Sugai 《Biochemistry》1986,25(22):6965-6972
The refolding kinetics of alpha-lactalbumin at different concentrations of guanidine hydrochloride have been investigated by means of kinetic circular dichroism and stopped-flow absorption measurements. The refolding reaction consists of at least two stages, the instantaneous accumulation of the transient intermediate that has peptide secondary structure and the subsequent slow process associated with formation of tertiary structure. The transient intermediate is compared with the well-characterized equilibrium intermediate observed during the denaturant-induced unfolding. Stabilities of the secondary structures against the denaturant, affinities for Ca2+, and tryptophan absorption properties of the transient and equilibrium intermediates were investigated. In all of these respects, the transient intermediate is identical with the equilibrium one, demonstrating the validity of the use of the equilibrium intermediate as a model of the folding intermediate. Essentially the same transient intermediate was also detected in the folding of lysozyme, the protein known to be homologous to alpha-lactalbumin but whose equilibrium unfolding is represented as a two-state reaction. The stability and cooperativity of the secondary structure of the intermediate of lysozyme are compared with those of alpha-lactalbumin. The results show that the protein folding occurring via the intermediate is not limited to the proteins that show equilibrium intermediates. Although the unfolding equilibria of most proteins are well approximated as a two-state reaction, the two-state hypothesis may not be applicable to the folding reaction under the native condition. Two models of protein folding, intermediate-controlled folding model and multiple-pathway folding model, which are different in view of the role of the intermediate in determining the pathway of folding, are also discussed.  相似文献   

4.
Wild-type hen lysozyme has been converted from its soluble native state into highly organized amyloid fibrils. In order to achieve this conversion, conditions were chosen to promote partial unfolding of the native globular fold and included heating of low-pH solutions and addition of organic solvents. Two peptides derived from the beta-sheet region of hen lysozyme were also found to form fibrils very readily. The properties and morphologies of the amyloid fibrils formed by incubation either of the protein or the peptides are similar to those produced from the group of proteins associated with clinical amyloidoses. Fibril formation by hen lysozyme was substantially accelerated when aliquots of solutions in which fibrils of either one of the peptides or the full-length protein had previously formed were added to fresh solutions of the protein, revealing the importance of seeding in the kinetics of fibril formation. These findings support the proposition that the beta-domain is of particular significance in the formation of fibrils from the full-length protein and suggest similarities between the species giving rise to fibril formation and the intermediates formed during protein folding.  相似文献   

5.
Proteins frequently fold via folding intermediates that correspond to local minima on the conformational energy landscape. Probing the structure of the partially unfolded forms in equilibrium under native conditions can provide insight into the properties of folding intermediates. To elucidate the structures of folding intermediates of Escherichia coli dihydrofolate reductase (DHFR), we investigated transient partial unfolding of DHFR under native conditions. We probed the structure of a high‐energy conformation susceptible to proteolysis (cleavable form) using native‐state proteolysis. The free energy for unfolding to the cleavable form is clearly less than that for global unfolding. The dependence of the free energy on urea concentration (m‐value) also confirmed that the cleavable form is a partially unfolded form. By assessing the effect of mutations on the stability of the partially unfolded form, we found that native contacts in a hydrophobic cluster formed by the F‐G and Met‐20 loops on one face of the central β‐sheet are mostly lost in the partially unfolded form. Also, the folded region of the partially unfolded form is likely to have some degree of structural heterogeneity. The structure of the partially unfolded form is fully consistent with spectroscopic properties of the near‐native kinetic intermediate observed in previous folding studies of DHFR. The findings suggest that the last step of the folding of DHFR involves organization in the structure of two large loops, the F‐G and Met‐20 loops, which is coupled with compaction of the rest of the protein.  相似文献   

6.
Protic ionic liquids (PILs) are currently being shown to be as interesting and valuable to chemical manipulations as the well-known aprotic ionic liquids (APIL). PILs have the additional advantage that the proton activity (PA) can be adjusted by the choice of Bronsted base and Bronsted acid used in their formation. In the absence of solvent, the PA plays the role of pH in ordinary solutions. Previously, we have shown that solution of proteins in ionic-liquid-rich solutions conveys surprising stabilization against hydrolysis and aggregation, permitting multiple unfold/refold cycles without loss to aggregation. Here, we show that the denaturing temperatures of both hen egg white lysozyme and ribonuclease A are sensitive to the PA of the PIL as much as they are to pH in aqueous solutions. A maximum stability for more basic solutions is found, and the unfolding process is well described by the two-state (cooperative) model. Finally, we show that, by PA tuning, the PILs can select folding pathways featuring the postulated intermediates so that they are fully populated during the unfolding process. The intermediates are themselves capable of multiple unfold/refold cycles with little loss per cycle to aggregation process.  相似文献   

7.
We previously demonstrated that the hydrophobic clusters present in hen lysozyme under denaturing conditions were disrupted by the mutation of Trp62 to Gly (W62G). In order to examine the effects of the structure of the denatured state of W62G lysozyme on folding, we analyzed the early events in the folding of reduced W62G lysozyme in detail. From the exchange measurements of disulfide bonds using the variants containing a pair of cysteine residues (1SS), it was found that the formation of disulfide bond in the W62G1SS lysozyme was not accompanied by a prominent interaction between amino acid residues, indicating that the disruption of the hydrophobic core led to the random folding at the early stages in the process of folding of the reduced lysozyme. On the other hand, analyses of the oxidative-renaturation of reduced W62G lysozymes, as well as measurements of the extent of aggregation of the reduced and carboxy amido methylated W62G lysozyme, indicated that the formation of an aggregate is more prominent in the reduced W62G lysozyme than in the reduced wild-type lysozyme. Moreover, a lag phase was detected in the oxidative-renaturation of reduced W62G lysozyme, as based on observations of the recovery of activity. The simulation of the folding process indicated that intermediates were present at the early stages in the folding of the reduced W62G lysozyme. These results suggest that the presence of the intermediates was derived from the random folding at the early stages in the folding process of reduced W62G lysozyme due to the disruption of the structure of the denatured state. Folding thus appears to have been kinetically delayed by these processes, which then led to the significant aggregation of reduced lysozyme. Moreover, from the analysis of amyloid aggregation of the reduced lysozymes, it was suggested that the disruption of the residual structure in denatured state by W62G mutation deterred the formation of the amyloid fibrils of lysozyme.  相似文献   

8.
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two‐state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non‐cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier‐less “downhill” folding, as well as for continuous “uphill” unfolding transitions, indicate that gradual non‐cooperative processes may be ubiquitous features on the free energy landscape of protein folding.  相似文献   

9.
An off-lattice 46-bead model of a small all-beta protein has been recently criticized for possessing too many traps and long-lived intermediates compared with the folding energy landscape predicted for real proteins and models using the principle of minimal frustration. Using a novel sequence design approach based on threading for finding beneficial mutations for destabilizing traps, we proposed three new sequences for folding in the beta-sheet model. Simulated annealing on these sequences found the global minimum more reliably, indicative of a smoother energy landscape, and simulated thermodynamic variables found evidence for a more cooperative collapse transition, lowering of the collapse temperature, and higher folding temperatures. Folding and unfolding kinetics were acquired by calculating first-passage times, and the new sequences were found to fold significantly faster than the original sequence, with a concomitant lowering of the glass temperature, although none of the sequences have highly stable native structures. The new sequences found here are more representative of real proteins and are good folders in the T(f) > T(g) sense, and they should prove useful in future studies of the details of transition states and the nature of folding intermediates in the context of simplified folding models. These results show that our sequence design approach using threading can improve models possessing glasslike folding dynamics.  相似文献   

10.
We present the results of two 1.2 ns molecular dynamics (MD) unfolding simulations on hen egg lysozyme in water at 300K, performed using a new procedure called PEDC (Path Exploration With Distance Constraints). This procedure allows exploration of low energy structures as a function of increasing RMSD from the native structure, and offers especially the possibility of extensive exploration of the conformational space during the initial unfolding stages. The two independent MD simulations gave similar chronology of unfolding events: disruption of the active site, kinking of helix C, partial unfolding of the three-stranded beta-sheet to a two-stranded sheet (during which the helices A, B, and D remain to a great extent native), and finally unfolding of the beta-domain and partial unfolding of the alpha-domain in which hydrophobic clusters persist. We show particularly that the loss of hydrophobic contacts between the beta-sheet turn residues Leu55 and Ile56 and the hydrobic patch of the alpha-domain destabilizes the beta-domain and leads to its unfolding, suggesting that the correct embedding of these residues in the alpha-beta interface may constitute the rate limiting step in folding. These results are in accord with experimental observations on the folding/unfolding behavior of hen egg lysozyme at room temperature. They would also explain the loss of stability and the tendency to aggregation observed for the mutant Leu55Thr, and the slow refolding kinetics observed in the analogous amyloidogenic variant of human lysozyme.  相似文献   

11.
Experimental determination of the key features of the free energy landscapes of proteins, which dictate their adeptness to fold correctly, or propensity to misfold and aggregate and which are modulated upon a change from physiological to aggregation-prone conditions, is a difficult challenge. In this study, sub-millisecond kinetic measurements of the folding and unfolding of the mouse prion protein reveal how the free energy landscape becomes more complex upon a shift from physiological (pH 7) to aggregation-prone (pH 4) conditions. Folding and unfolding utilize the same single pathway at pH 7, but at pH 4, folding occurs on a pathway distinct from the unfolding pathway. Moreover, the kinetics of both folding and unfolding at pH 4 depend not only on the final conditions but also on the conditions under which the processes are initiated. Unfolding can be made to switch to occur on the folding pathway by varying the initial conditions. Folding and unfolding pathways appear to occupy different regions of the free energy landscape, which are separated by large free energy barriers that change with a change in the initial conditions. These barriers direct unfolding of the native protein to proceed via an aggregation-prone intermediate previously identified to initiate the misfolding of the mouse prion protein at low pH, thus identifying a plausible mechanism by which the ruggedness of the free energy landscape of a protein may modulate its aggregation propensity.  相似文献   

12.
We have used native state exchange to examine the energy landscape of the well-characterized protein T4 lysozyme. Although the protein exhibits two-state behavior by traditional probes, the energy landscape determined here is much more complex. The average stability of the C-terminal subdomain is significantly higher than that for the N-terminus suggesting at least two regions of unfolding. At a more detailed level, there appears to be a broad continuum of stabilities throughout each region. The overall subdomain hierarchy of energies does not mirror data on the folding pathway for this protein, challenging the relationship between energy landscapes and folding trajectories.  相似文献   

13.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways.  相似文献   

14.
The aspartic acid (Asp)-induced unfolding and the salt-induced folding of arginine kinase (AK) were studied in terms of enzyme activity, intrinsic fluorescence emission spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra and far-UV circular dichroism (CD) spectra. The results showed that Asp caused inactivation and unfolding of AK with no aggregation during AK denaturation. The unfolding of the whole molecule and the inactivation of AK in different Asp concentrations were compared. Much lower Asp concentration was required to induce inactivation than to produce significant conformational changes of the enzyme molecule. However, with further addition of Asp, the molar ellipticity at 222 and 208 nm, the wavelength shift and the emission intensity of ANS hardly changed. Asp denatured AK was reactivated by dilution. In addition, potassium chloride (KCl) induced the molten globule state with a compact structure after AK was denatured with 7.5 mM Asp. These results collectively elucidate the osmotic effect of Asp anions for the molten globule formed during unfolding process. They also suggest that the effect of Asp differed from that of other denaturants such as guanidine hydrochloride or urea during AK folding. The molten globule state indicates that intermediates exist during AK folding.  相似文献   

15.
Enhanced structural insights into the folding energy landscape of the N-terminal dimerization domain of Escherichia coli tryptophan repressor, [2-66]2 TR, were obtained from a combined experimental and theoretical analysis of its equilibrium folding reaction. Previous studies have shown that the three intertwined helices in [2-66]2 TR are sufficient to drive the formation of a stable dimer for the full-length protein, [2-107]2 TR. The monomeric and dimeric folding intermediates that appear during the folding reactions of [2-66]2 TR have counterparts in the folding mechanism of the full-length protein. The equilibrium unfolding energy surface on which the folding and dimerization reactions occur for [2-66]2 TR was examined with a combination of native-state hydrogen exchange analysis, pepsin digestion and matrix-assisted laser/desorption mass spectrometry performed at several concentrations of protein and denaturant. Peptides corresponding to all three helices in [2-66]2 TR show multi-layered protection patterns consistent with the relative stabilities of the dimeric and monomeric folding intermediates. The observation of protection exceeding that offered by the dimeric intermediate in segments from all three helices implies that a segment-swapping mechanism may be operative in the monomeric intermediate. Protection greater than that expected from the global stability for a single amide hydrogen in a peptide from the C-helix possibly and another from the A-helix may reflect non-random structure, possibly a precursor for segment swapping, in the urea-denatured state. Native topology-based model simulations that correspond to a funnel energy landscape capture both the monomeric and dimeric intermediates suggested by the HX MS data and provide a rationale for the progressive acquisition of secondary structure in their conformational ensembles.  相似文献   

16.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

17.
The effects of lacking a specific disulfide bridge on the transition state in folding were examined in order to explore the folding-unfolding mechanism of lysozyme. Four species of three-disulfide variant of hen lysozyme (3SS-lysozyme) were prepared by replacing two Cys residues with Ala or Ser: C6S/C127A, C30A/C115A, C64A/C80A and C76A/C94A. The recombinant hen lysozyme was studied as the standard reference containing four authentic disulfide bridges and the extra N-terminal Met: the recombinant hen lysozyme containing the extra N-terminal. Folding rates were measured by monitoring the change in fluorescence intensity associated with tri-N-acetyl-d-glucosamine binding to the active site of refolded lysozyme. It was confirmed that the folding rate of the recombinant hen lysozyme containing the extra N-terminal was the same as that of wild-type lysozyme, and that the folding rate was little affected by the presence of tri-N-acetyl-d-glucosamine (triNAG). The folding rate of C64A/C80A was found to be the fastest and almost the same as that of the recombinant hen lysozyme containing the extra N-terminal, and that of C30A/C115A the second, and that of C6S/C127A the third. The folding rate of C76A/C94A was particularly slow. On the other hand, the unfolding rates which were measured in the presence of triNAG showed the dependence on the concentration of triNAG. The intrinsic unfolding rate in the absence of triNAG was determined by extrapolation. Also in the unfolding rate, C76A/C94A was markedly slower than the others. It was found from the analysis of binding constants of triNAG to C64A/C80A during the unfolding process that the active site of C64A/C80A partly unfolds already prior to the unfolding transition. On the basis of these kinetic data, we suggest that C64A/C80A folding transition can occur with leaving the loop region around SS3 (C64-C80) flexible, while cross-linking by SS4 (C76-C94) is important for the promotion of folding, because it is an indispensable constraint on the way towards the folding transition state.  相似文献   

18.
The modulation of the folding mechanism of the small protein single-chain monellin (MNEI) by the Escherichia coli chaperone GroEL has been studied. In the absence of the chaperone, the folding of monellin occurs via three parallel routes. When folding is initiated in the presence of a saturating concentration of GroEL, only 50-60% of monellin molecules fold completely. The remaining 40-50% of the monellin molecules remain bound to the GroEL and are released only upon addition of ATP. It is shown that the basic folding mechanism of monellin is not altered by the presence of GroEL, but that it occurs via only one of the three available routes when folding is initiated in the presence of saturating concentrations of GroEL. Two pathways become nonoperational because GroEL binds very tightly to early intermediates that populate these pathways in a manner that makes the GroEL-bound intermediates incompetent to fold. This accounts for the monellin molecules that remain GroEL-bound at the end of the folding reaction. The third pathway remains operational because the GroEL-bound early intermediate on this pathway is folding-competent, suggesting that this early intermediate binds to GroEL in a manner that is different from that of the binding of the early intermediates on the other two pathways. It appears, therefore, that the same protein can bind GroEL in more than one way. The modulation of the folding energy landscape of monellin by GroEL occurs because GroEL binds folding intermediates on parallel folding pathways, in different ways, and with different affinities. Moreover, when GroEL is added to refolding monellin at different times after commencement of refolding, the unfolding of two late kinetic intermediates on two of the three folding pathways can be observed. It appears that the unfolding of late folding intermediates is enabled by a thermodynamic coupling mechanism, wherein GroEL binds more tightly to an early intermediate than to a late intermediate on a folding pathway, with preferential binding energy being larger than the stability of the late intermediate. Hence, it is shown that GroEL can inadvertently and passively cause, through its ability to bind different folding intermediates differentially, the unfolding of late productive intermediates on folding pathways, and that its unfolding action is not restricted solely to misfolded or kinetically trapped intermediates.  相似文献   

19.
Cao S  Chen SJ 《RNA (New York, N.Y.)》2005,11(12):1884-1897
Based on the virtual bond representation for the nucleotide backbone, we develop a reduced conformational model for RNA. We use the experimentally measured atomic coordinates to model the helices and use the self-avoiding walks in a diamond lattice to model the loop conformations. The atomic coordinates of the helices and the lattice representation for the loops are matched at the loop-helix junction, where steric viability is accounted for. Unlike the previous simplified lattice-based models, the present virtual bond model can account for the atomic details of realistic three-dimensional RNA structures. Based on the model, we develop a statistical mechanical theory for RNA folding energy landscapes and folding thermodynamics. Tests against experiments show that the theory can give much more improved predictions for the native structures, the thermal denaturation curves, and the equilibrium folding/unfolding pathways than the previous models. The application of the model to the P5abc region of Tetrahymena group I ribozyme reveals the misfolded intermediates as well as the native-like intermediates in the equilibrium folding process. Moreover, based on the free energy landscape analysis for each and every loop mutation, the model predicts five lethal mutations that can completely alter the free energy landscape and the folding stability of the molecule.  相似文献   

20.
Mukherjee S  Mohan PM  Kuchroo K  Chary KV 《Biochemistry》2007,46(35):9911-9919
The protein folding energy landscape allows a thorough understanding of the protein folding problem which in turn helps in understanding various aspects of biological functions. Characterizing the cooperative unfolding units and the intermediates along the folding funnel of a protein is a challenging task. In this paper, we investigated the native energy landscape of EhCaBP, a calcium sensor, belonging to the same EF-hand superfamily as calmodulin. EhCaBP is a two-domain EF-hand protein consisting of two EF-hands in each domain and binding to four Ca2+ cations. Native-state hydrogen exchange (HX) was used to assess the folding features of the landscape and also to throw light on the structure-folding function paradigm of calcium sensor proteins. HX measurements under the EX2 regime provided the thermodynamic information about the protein folding events under native conditions. HX studies revealed that the unfolding of EhCaBP is not a two-state process. Instead, it proceeds through cooperative units. The C-terminal domain exhibits less denaturant dependence than the N-terminal domain, suggesting that the former is dominated by local fluctuations. It is interesting to note that the N- and C-terminal domains of EhCaBP have distinct folding features. In fact, these observed differences can regulate the domain-dependent target recognition of two-domain Ca2+ sensor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号