首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this work was to evaluate and compare the functionality of bovine fatty acids-derived (MgSt-B) and vegetable fatty acids-derived (MgSt-V) magnesium stearate powders when used for the lubrication of granules prepared by high-shear (HSG) and fluid bed (FBG) wet granulation methods. The work included evaluation of tablet compression and ejection forces during tabletting and dissolution testing of the compressed tablets. Granules prepared by both granulation methods required significantly lower ejection force (p < 0.01) when lubricated with the MgSt-V powder as compared to those lubricated with the MgSt-B powder. Granules prepared by the HSG method and lubricated with the MgSt-V powder also required significantly lower compression force (p < 0.01) to produce tablets of similar weight and hardness as compared to those lubricated with the MgSt-B powder. The dissolution profiles were not affected by these differences and were the same for tablets prepared by same granulation method and lubricated with either magnesium stearate powder. The results indicate significant differences (p < 0.01) between lubrication efficiency of the MgSt-B and the MgSt-V powders and emphasize the importance of functionality testing of the MgSt powders to understand the impact of these differences. The opinions expressed in this work are only of authors, and do not necessarily reflect the policy and statements of the FDA.  相似文献   

2.
The aim of this study was to investigate the feasibility of using Eudragit E as a granulating agent for a spray-dried extract fromPhyllanthus niruri to obtain tablets containing a high dose of this product. The granules were developed by wet granulation and contained 2.5%, 5.0%, and 10.0% Eudragit E in the final product concentration. The tablets were produced on a single-punch tablet press by direct compression of granules using 0.5% magnesium stearate as a lubricant. The tablets were elaborated following a 2×3 factorial design, where Eudragit E concentration and compression force were the in-dependent variables, and tensile strength and the extract release of the tablets were the dependent variables. All granules showed better technological properties than the spray-dried extract, including less moisture sorption. The characteristics of the granules were directly dependent on the proportion of Eudragit E in the formulation. In general, all tablets showed high mechanical resistance with less than 1% friability, less moisture sorption, and a slower extract release profile. The Eudragit E concentration and compression force of the tablets significantly influenced both dependent variables studied. In conclusion, Eudragit E was efficient as a granulating agent for the spray-dried extract, but additional studies are needed to further optimize the formuations in order to achieve less water sorption and improve the release of the extract from the tablets. Published: April 27, 2007  相似文献   

3.
The purpose of this paper was to evaluate the compressional behavior of granules containing high load of a Phyllanthus niruri spray-dried extract in eccentric (ETM) and rotary (RTM) tablet presses. Tablets were constituted by spray-dried extract granules (SDEG, 92%), excipient granules (EXCG, 7.92%), and magnesium stearate (0.08%). SDEG was obtained by dry granulation and EXCG, composed of microcrystalline cellulose (62.9%) and sodium starch glycolate (37.1%), by wet granulation. Particle size distribution was fixed between 0.250 and 0.850 mm. Tablets did not evidence any mechanical failures, such as lamination or capping, or anomalous weight variation in either tablet machine types. Upper and lower tablet surface photomicrographs from ETM and RTM tablets showed differences in porosity and texture. Different RTM speeds suggested the visco-plastic behavior of the formulation, since, by slowing down rotation speeds, the tensile strength of the tablets increased significantly, but the porosity and disintegration time were not affected. Tablets produced in RTM showed lower friability and porosity than ETM tablets, which did not reflect on higher tensile strength. The EXCG distribution at upper and lower surfaces from ETM and RTM tablets was quantified by image analysis and evaluated through statistical methods. Spray-dried extract release was not influenced by the type of equipment or operational conditions to which the compacts were submitted. Construction and operation differences between both tablet presses influenced the final product, since tablets with similar tensile strength, made by distinct tablet machines, exhibited different quality parameters.  相似文献   

4.
A noncontact/nondestructive air-coupled acoustic technique to be potentially used in mechanical property determination of bilayer tablets is presented. In the reported experiments, a bilayer tablet is vibrated via an acoustic field of an air-coupled transducer in a frequency range sufficiently high to excite several vibrational modes (harmonics) of the tablet. The tablet vibrational transient responses at a number of measurement points on the tablet are acquired by a laser vibrometer in a noncontact manner. An iterative computational procedure based on the finite element method is utilized to extract the Young’s modulus, the Poisson’s ratio, and the mass density values of each layer material of a bilayer tablet from a subset of the measured resonance frequencies. For verification purposes, a contact ultrasonic technique based on the time-of-flight data of the longitudinal (pressure) and transverse (shear) acoustic waves in each layer of a bilayer tablet is also utilized. The extracted mechanical properties from the air-coupled acoustic data agree well with those determined from the contact ultrasonic measurements. The mechanical properties of solid oral dosage forms have been shown to impact its mechanical integrity, disintegration profile and the release rate of the drug in the digestive tract, thus potentially affecting its therapeutic response. The presented nondestructive technique provides greater insight into the mechanical properties of the bilayer tablets and has the potential to identify quality and performance problems related to the mechanical properties of the bilayer tablets early on the production process and, consequently, reduce associated cost and material waste.  相似文献   

5.
This work aims at investigating different types and levels of hydrophilic matrixing agents, including methylcellulose (MC), sodium alginate (Alg), and sodium carboxymethylcellulose (CMC), in an attempt to formulate controlled-release matrix tablets containing 25 mg baclofen. The tablets were prepared by wet granulation. Prior to compression, the prepared granules were evaluated for flow and compression characteristics. In vitro, newly formulated controlled-release tablets were compared with standard commercial tablets (Lioresal and baclofen). The excipients used in this study did not alter physicochemical properties of the drug, as tested by the thermal analysis using differential scanning calorimetry. The flow and compression characteristics of the prepared granules significantly improved by virtue of granulation process. Also, the prepared matrix tablets showed good mechanical properties (hardness and friability). MC- and Alg-based tablet formulations showed high release-retarding efficiency, and good reproducibility and stability of the drug release profiles when stored for 6 months in ambient room conditions, suggesting that MC and Alg are good candidates for preparing modified-release baclofen tablet formulations.  相似文献   

6.
This investigation examined the application of acid-treated yeast cell wall (AYC) as a binder functioning as a disintegrant. Acetylsalicylic acid (ASA) was granulated with AYC, hydroxypropylcellulose (HPC), polyvinylpyrrolidone (PVP), or pullulan (PUL) and compressed into a tablet in the absence of disintegrant. Particle size and angle of repose of the granules, tensile strength, disintegration time, and water absorption behavior of the tablets and ASA release profiles from the tablets were measured. The surface of AYC-granules was observed with a scanning electron microscope. As was the case with the granules of HPC, PVP, or PUL, D50 of the granules of AYC increased with increasing AYC addition percentage, indicating that it is possible to granulate ASA with AYC. Tablets incorporating HPC, PVP, and PUL failed to disintegrate within 30 minutes at all percentages of binder addition because in the case of the HPC, PVP, or PUL tablets in the dissolution medium, water scarcely penetrated into the inner region of the tablet, causing no disintegration. In the case of the AYC tablets, disintegration was not detected at 3% or less of AYC. When AYC was equal to or greater than 5%, AYC tablets disintegrated in approximately 4 minutes and rapid ASA release from the tablets was observed. These results may have been caused by the following. In the case of the AYC 3% granules, ungranulated aspirin powder remained, but in the case of the AYC 5% granules, ASA powder was granulated and covered with AYC. Water absorption was observed initially; however, a plateau was reached in the case of the AYC 3%-tablet. In contrast, in the cases of the AYC 5% and more tablets, water absorption was greater and increased with time. The angle of repose of the AYC 5% granules was 25.7°, which represented high fluidity. The tablets produced by compressing the granules demonstrated sufficient tensile strength greater than 0.8 MPa. The tablets rapidly disintegrated and rapid ASA release was obtained. AYC functioned as a binder at granulation; additionally, AYC served as a disintegrant in the dissolution of drug from the tablets. These results indicate that AYC affords high utility as a unique pharmaceutical additive possessing contrary functions such as binding and disintegration.  相似文献   

7.
In this paper, linkages between tablet surface roughness, tablet compression forces, material properties, and the tensile strength of tablets were studied. Pure sodium halides (NaF, NaBr, NaCl, and NaI) were chosen as model substances because of their simple and similar structure. Based on the data available in the literature and our own measurements, various models were made to predict the tensile strength of the tablets. It appeared that only three parameters—surface roughness, upper punch force, and the true density of material—were needed to predict the tensile strength of a tablet. Rather surprising was that the surface roughness alone was capable in the prediction. The used new 3D imaging method (Flash sizer) was roughly a thousand times quicker in determining tablet surface roughness than traditionally used laser profilometer. Both methods gave practically analogous results. It is finally suggested that the rapid 3D imaging can be a potential in-line PAT tool to predict mechanical properties of tablets in production.  相似文献   

8.
A “simplex-centroid mixture design” was used to study the direct-compression properties of binary and ternary mixtures of chitin and two cellulosic direct-compression diluents. Native milled and fractioned (125–250 μm) crustacean chitin of lobster origin was blended with microcrystalline cellulose, MCC (Avicel® PH 102) and spray-dried lactose–cellulose, SDLC Cellactose® (composed of a spray-dried mixture of alpha-lactose monohydrate 75% and cellulose powder 25%). An instrumented single-punch tablet machine was used for tablet compactions. The flowability of the powder mixtures composed of a high percentage of chitin and SDLC was clearly improved. The fractioned pure chitin powder was easily compressed into tablets by using a magnesium stearate level of 0.1% (w/w) but, as the die lubricant level was 0.5% (w/w), the tablet strength collapsed dramatically. The tablets compressed from the binary mixtures of MCC and SDLC exhibited elevated mechanical strengths (>100 N) independent of the die lubricant level applied. In conclusion, fractioned chitin of crustacean origin can be used as an abundant direct-compression co-diluent with the established cellulosic excipients to modify the mechanical strength and, consequently, the disintegration of the tablets. Chitin of crustacean origin, however, is a lubrication-sensitive material, and this should be taken into account in formulating direct-compression tablets of it.  相似文献   

9.
The gas transport properties of compacted tablets consisting of an amorphous mixture of maltodextrin and sodium caseinate were studied by dissolving nitrogen gas in the tablets and then determining the gas release over time as a function of temperature and water activity. Gas was dissolved in the tablet matrix by heating the tablets under pressure, generally to temperatures above the glass transition temperature of the matrix, holding them at these conditions for a specified time and then rapidly cooling them while maintaining the external pressure. The solubility of nitrogen was found to be largely determined by the free volume of the matrix, which in turn can be influenced to some degree by thermal and pressure treatments during gas loading. At the levels of free volume studied, the dissolved nitrogen is densely packed in the free volume, the packing density being virtually independent of the externally applied pressure. Release of gas from the tablets at temperatures below the glass transition temperature is generally well described by Fickian diffusion. The effective diffusion coefficient of gas release is strongly dependent on the microstructure and porosity of the tablet matrix, and an approximate model describing the relationship between tablet structure and rate of gas release is formulated. The model is in semiquantitative agreement with the rates of gas diffusion obtained for tablets and dense granules. Owing to the structural heterogeneity and variability of the tablets and the history-dependent properties of the tablet matrix, the effective diffusion coefficients of gas release from the tablets showed a relatively large spread. The temperature dependence of diffusional release follows an Arrhenius relation below the glass transition temperature. This allows the prediction of the nitrogen retention in the tablets as function of time, temperature and pressure.  相似文献   

10.
This study investigated the influence of excipient composition to the roller compaction and granulation characteristics of pharmaceutical formulations that were comprised of a spray-dried filler (lactose monohydrate or mannitol), pregelatinized starch, talc, magnesium stearate (1% w/w) and a ductile active pharmaceutical ingredient (25% w/w) using a mixed-level factorial design. The main and interaction effects of formulation variables (i.e., filler type, starch content, and talc content) to the response factors (i.e., solid fraction and tensile strength of ribbons, particle size, compressibility and flow of granules) were analyzed using multi-linear stepwise regression analysis. Experimental results indicated that roller compacted ribbons of both lactose and mannitol formulations had similar tensile strength. However, resulting lactose-based granules were finer than the mannitol-based granules because of the brittleness of lactose compared to mannitol. Due to the poor compressiblility of starch, increasing starch content in the formulation from 0% to 20% w/w led to reduction in ribbon solid fraction by 10%, ribbon tensile strength by 60%, and granule size by 30%. Granules containing lactose or more starch showed less cohesive flow than granules containing mannitol and less starch. Increasing talc content from 0% to 5% w/w had little effect to most physical properties of ribbons and granules while the flow of mannitol-based granules was found improved. Finally, it was observed that stored at 40 °C/75% RH over 12 weeks, gelatin capsules containing lactose-based granules had reduced dissolution rates due to pellicle formation inside capsule shells, while capsules containing mannitol-based granules remained immediate dissolution without noticeable pellicle formation.  相似文献   

11.
The purpose of this research was to evaluate beta-cyclodextrin (beta-CD) as a vehicle, either singly or in blends with lactose (spray-dried or monohydrate), for preparing a meloxicam tablet. Aqueous solubility of meloxicam in presence of beta-CD was investigated. The tablets were prepared by direct compression and wet granulation techniques. The powder blends and the granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, disintegration time, and in vitro dissolution studies. The effect of beta-CD on the bioavailability of meloxicam was also investigated in human volunteers using a balanced 2-way crossover study. Phase-solubility studies indicated an A(L)-type diagram with inclusion complex of 1:1 molar ratio. The powder blends and granules of all formulations showed satisfactory flow properties, compressibility, and drug content. All tablet formulations prepared by direct compression or wet granulation showed acceptable mechanical properties. The dissolution rate of meloxicam was significantly enhanced by inclusion of beta-CD in the formulations up to 30%. The mean pharmacokinetic parameters (C(max), K(e), and area under the curve [AUC](0-infinity)) were significantly increased in presence of beta-CD. These results suggest that beta-CD would facilitate the preparation of meloxicam tablets with acceptable mechanical properties using the direct compression technique as there is no important difference between tablets prepared by direct compression and those prepared by wet granulation. Also, beta-CD is particularly useful for improving the oral bioavailablity of meloxicam.  相似文献   

12.
Ambient air humidity and temperature are known to influence the mechanical strength of tablets. The objective of this work is to understand the influence of processing parameters and environmental conditions (humidity and temperature) on the strength of bilayer tablets. As part of this study, bilayer tablets were compressed with different layer ratios, dwell times, layer sequences, material properties (plastic and brittle), first and second layer forces, and lubricant concentrations. Compressed tablets were stored in stability chambers controlled at predetermined conditions (40C/45%RH, 40C/75%RH) for 1, 3, and 5 days. The axial strength of the stored tablets was measured and a statistical model was developed to determine the effects of the aforementioned factors on the strength of bilayer tablets. As part of this endeavor, a full 3 × 24 factorial design was executed. Responses of the experiments were analyzed using PROC GLM of SAS (SAS Institute Inc, Cary, North Carolina, USA). A model was fit using all the responses to determine the significant interactions (p < 0.05). Results of this study indicated that storage conditions and storage time have significant impact on the strength of bilayer tablets. For Avicel–lactose and lactose–Avicel tablets, tablet strength decreased with the increasing humidity and storage time. But for lactose–lactose tablets, due to the formation of solid bridges upon storage, an increase in tablet strength was observed. Significant interactions were observed between processing parameters and storage conditions on the strength of bilayer tablets.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-012-9846-8) contains supplementary material, which is available to authorized users.KEY WORDS: axial tester, bilayer tablet, design of experiments, storage conditions, tablet strength  相似文献   

13.
This study determined the physical, compressional, and binding properties of neem gum (NMG) obtained from the trunk of Azadirachta indica (A Juss) in a paracetamol tablet formulation in comparison with official Acacia gum BP (ACA). The physical and flow properties were evaluated using density parameters: porosity, Carr’s index, Hausner’s ratio, and flow rate. Compressional properties were analyzed using Heckel and Kawakita equations. The tensile strength, brittle fracture index, and crushing strength–friability/disintegration time ratio were used to evaluate the mechanical properties of paracetamol tablets while the drug release properties of the tablets were assessed using disintegration time and dissolution times. Tablet formulations containing NMG exhibited faster onset and higher amount of plastic deformation during compression than those containing ACA. Neem gum produced paracetamol tablets with lower mechanical strength; however, the tendency of the tablets to cap or laminate was lower when compared to those containing ACA. Inclusion of NMG improved the balance between binding and disintegration properties of paracetamol tablets produced than those containing ACA. Neem gum produced paracetamol tablets with lower disintegration and dissolution times than those containing ACA.  相似文献   

14.
Directly compressible co-processed excipient systems facilitate orodispersible tablets (ODTs) manufacturing. Despite several excipient systems available, it is reported that the incorporation of high drug dose into the tablet mass may negatively affect both disintegration and mechanical properties. Therefore the influence of drug properties on the quality of orodispersible tablets was investigated. Fast dissolving tablet matrix was made of a co-processed excipient system F-Melt. Two grades of F-Melt that differed in composition, particle shape, and specific surface area were used to form tablet matrix. Ibuprofen, diclofenac sodium, and diltiazem hydrochloride were chosen as model drugs of different physicochemical properties such as solubility, particle size, and shape. Ninety formulations containing 12.5, 25, or 50 wt% of the model drug and F-Melt type C or M were prepared by direct compression. The quality of tablets was examined on the base of disintegration time, wetting time, mechanical resistance and texture analysis. The results showed that F-Melt grade, drug solubility, and its dose had an influence on the quality of tablets. From ninety formulations prepared, only four batches containing F-Melt type C and 12.5 wt% of ibuprofen, diclofenac sodium, or diltiazem hydrochloride could be classified as ODTs. Their disintegration time ranged from 41 to 144 s. In the case of F-Melt type M, tablets disintegrating within 101 s of friability below 1% could be prepared only if 12.5 wt% of diclofenac sodium was incorporated into the tablet mass.Key words: diclofenac sodium, diltiazem hydrochloride, direct compression, F-Melt, ibuprofen, ODTs  相似文献   

15.
The effects of plantain starch obtained from the unripe fruit of the plantMusa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 23 factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and disintegration time (DT) of the tablets were investigated. The ranking of the individual effects on TS was RD>C≫N, on BFI was C≫RD>N and on DT was N>C>RD. The ranking for the interaction effects on TS and DT was N-C≫N-RD>C-RD, while that on BFI was N-C≫C-RD>N-RD. Changing nature of starch from a “low” (plantain starch) to a “high” (corn starch) level, increasing the concentration of starch binding agent from 2.5% to 10.0% wt/wt, and increasing relative density of the tablet from 0.80 to 0.90, led to increase in the values of TS and DT, but a decrease in BFI. Thus, tablets containing plantain starch had lower tensile strength and disintegration time values than those containing corn starch, but showed better ability to reduce the lamination and capping tendency in paracetamol tablet formulation. The interaction between N and C was significantly (P<.001) higher than those between N and RD and between C and RD. There is therefore the need to carefully choose the nature (N) and concentration (C) of starch used as binding agent in tablet formulations to obtain tablets of desired bond strength and disintegration properties. Furthermore, plantain starch could be useful as an alternative binding agent to cornstarch, especially where faster disintegration is required and the problems of lamination and capping are of particular concern. Published: October 22, 2005  相似文献   

16.
Magnesium stearate (MS) is the most commonly used lubricant in pharmaceutical industry. During blending, MS particles form a thin layer on the surfaces of the excipient and drug particles prohibiting the bonding from forming between the particles. This hydrophobic layer decreases the tensile strength of tablets and prevents water from penetrating into the tablet restraining the disintegration and dissolution of the tablets. Although overlubrication of the powder mass during MS blending is a well-known problem, the lubricant distribution in tablets has traditionally been challenging to measure. There is currently no adequate analytical method to investigate this phenomenon. In this study, the distribution of MS in microcrystalline cellulose (MCC) tablets was investigated using three different blending scales. The crushing strength of the tablets was used as a secondary response, as its decrease is known to result from the overlubrication. In addition, coating of the MCC particles by MS in intact tablets was detected using Raman microscopic mapping. MS blending was more efficient in larger scales. Raman imaging was successfully applied to characterize MS distribution in MCC tablets despite low concentration of MS. The Raman method can provide highly valuable visual information about the proceeding of the MS blending process. However, the measuring set-up has to be carefully planned to establish reliable and reproducible results.  相似文献   

17.
The objective of this study was to investigate the effect of lipophilic (Compritol 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of granules and tablets. The matrix swelling behavior was investigated. The dissolution profiles of each formulation were compared to those of Tegretol CR tablets and the mean dissolution time (MDT), dissolution efficiency (DE %) and similarity factor (f(2) factor) were calculated. It was found that increase in the concentration of HPMC results in reduction in the release rate from granules and achievement of zero-order is difficult from the granules. The amount of HPMC plays a dominant role for the drug release. The release mechanism of CBZ from matrix tablet formulations follows non-Fickian diffusion shifting to case II by the increase of HPMC content, indicating significant contribution of erosion. Increasing in drug loading resulted in acceleration of the drug release and in anomalous controlled-release mechanism due to delayed hydration of the tablets. These results suggest that wet granulation followed by compression could be a suitable method to formulate sustained release CBZ tablets.  相似文献   

18.
The purpose of this research was to apply near-infrared (NIR) spectroscopy with chemometrics to predict the change of pharmaceutical properties of antipyrine granules during granulation by regulation of the amount of water added. The various kinds of granules (mean particle size, 70–750 μm) were obtained from the powder mixture (1 g of antipyrine, 6 g of hydroxypropylcellulose, 140 g of lactose, and 60 g of potato starch) by regulation of the added water amount (11–19 wt/wt%) in a high-speed mixer. The granules were characterized by mean particle size, angle of repose, compressibility, tablet porosity, and tablet hardness as parameters of pharmaceutical properties. To predict the pharmaceutical properties, NIR spectra of the granules were measured and analyzed by principal component regression, (PCR) analysis. The mean particle size of the granules increased from 81 μm to 650 μm with an increase in the amount of water, and it was possible to make larger spherical granules with narrow particle size distribution using a high-speed mixer. Angle of repose, compressibility, and porosity of the tablets decreased with an increase of added water, but tablet hardness increased. The independent calibration models to evaluate particle size, angle of repose, and tablet porosity and hardness were established by using PCR based on NIR spectra of granules, respectively. The correlation coefficient constants of calibration curves for prediction of mean particle size, angle of repose, tablet porosity, and tablet hardness were 0.9109, 0.8912, 0.7437, and 0.8064, respectively. It is possible that the pharmaceutical properties of the granule, such as mean particle size, angle of repose, tablet porosity, and tablet hardness, could be predicted by an NIR-chemometric method.  相似文献   

19.
The aim of this study was to investigate the lubrication potential of 2 grades of magnesium stearate (MS) blended with a mix of dicalcium phosphate dihydrate and microcrystalline cellulose. Force-displacement, force-time, and ejection profiles were generated using an instrumented rotary tablet press, and the effect of MS mixing time (10, 20, and 30 minutes) and tableting speed (10.7, 13.8, and 17.5 rpm) was investigated. The packing index (PI), frictional index (FI), and packing energy (PE) derived from the force-displacement profiles showed that MS sample I performed better than sample II. At higher lubricant mixing times, the values of PI were observed to increase, and values of FI and PE were observed to decrease for both MS samples. Lower values of area under the curve (AUC) calculated from force-time compression profiles also showed sample I to be superior to sample II in lubrication potential. For both the samples, the values of AUC were observed to decrease with higher lubricant mixing times. Tapping volumetry that simulates the initial particle rearrangement gave values of parameter a and C(max) that were higher for sample I than sample II and also increased with lubricant mixing time. The superior lubrication potential of sample I was also established by the lower values of peak ejection force encountered in the ejection profile. Lower ejection forces were also found to result from higher tableting speeds and longer lubricant mixing times. The difference in lubrication efficacy of the 2 samples could be attributed to differences in their solid-state properties, such as particle size, specific surface area, and d-spacing.  相似文献   

20.
The purpose of this research was to evaluate β-cyclodextrin (β-CD) as a vehicle, either singly or in blends with lactose (spray-dried or monohydrate), for preparing a meloxicam tablet. Aqueous solubility of meloxicam in presence of β-CD was investigated. The tablets were prepared by direct compression and wet granulation techniques. The powder blends and the granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, disintegration time, and in vitro dissolution studies. The effect of β-CD on the bioavailability of meloxicam was also investigated in human volunteers using a balanced 2-way crossover study. Phase-solubility studies indicated an AL-type diagram with inclusion complex of 1∶1 molar ratio. The powder blends and granules of all formulations showed satisfactory flow properties, compressibility, and drug content. All tablet formations prepared by direct compression or wet granulation showed acceptable mechanical properties. The dissolution rate of meloxicam was significantly enhanced by inclusion of β-CD in the formulations up to 30%. The mean pharmacokinetic parameters (Cmax, Ke, and area under the curve [AUC]0−∞) were significantly increased in presence of β-CD. These results suggest that β-CD would facilitate the preparation of meloxicam tablets with acceptable mechanical properties using the direct compression technique as there is no important difference between tablets prepared by direct compression and those prepared by wet granulation. Also, β-CD is particularly useful for improving the oral bioavailablity of meloxicam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号