首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida strains can cause oral candidosis, as well as nipples candidosis and lead to premature weaning or yeast transmission. The aim of this study was to evaluate 51 Candida isolates obtained from the oral cavities of infants during breastfeeding and mothers’ oral cavities and nipples, their enzymatic activity and their sensitivity to amphotericin B, fluconazole and Baccharis dracunculifolia essential oil. Among the studied strains, 96.1% produced phospholipase and 78.4% produced proteinase. The antifungal resistance was only observed among isolates of C. albicans, for which three strains showed a resistant activity to fluconazole and one showed a resistant activity to amphotericin B. All strains were sensitive to B. dracunculifolia essential oil with MIC between 0.2 and 6.25 mg/ml. It was concluded that most of the strains showed significant enzymatic activity and were sensitive to amphotericin B and fluconazole. B. dracunculifolia essential oil inhibited the growth of all strains, including the ones resistant to commercial antifungal agents.  相似文献   

2.
Antifungal susceptibility testing of Candida against the echinocandin antifungal agents (anidulafungin [ANF], caspofungin [CSF], micafungin [MCF]) has been standardized by the Clinical and Laboratory Standards Institute (CLSI) Subcommittee on Antifungal Testing. The CLSI proposed a single set of clinical breakpoints (CBPs) for all three echinocandins and all species of Candida: susceptible, minimum inhibitory concentration (MIC) ≤ 2 μg/mL; nonsusceptible, MIC > 2 μg/mL. Subsequently, these CBPs have been shown to lack sensitivity in detecting strains of Candida with acquired resistance mechanisms associated with treatment failure. Studies using the CLSI method have defined wild-type (WT) MIC distributions and epidemiologic cutoff values (ECVs) for each echinocandin and the common species of Candida. The ECVs serve as a sensitive means of discriminating WT strains from those with acquired resistance mechanisms. WT MIC distributions revealed ECV ranges of 0.03 to 0.25 μg/mL for all major species except C. parapsilosis (1–4 μg/mL) and C. guilliermondii (4–16 μg/mL). These ECVs reliably differentiate WT strains of each species from non-WT strains containing fks mutations. These data, coupled with additional biochemical, clinical, pharmacokinetic, and pharmacodynamic considerations, have resulted in new CBPs of ≤0.25 μg/mL (susceptible), 0.5 μg/mL (intermediate), and ≥1 μg/mL (resistant) for ANF, CSF, and MCF for C. albicans, C. tropicalis, and C. krusei. For these agents and C. parapsilosis, the new CBPs are ≤2 μg/mL (susceptible), 4 μg/mL (intermediate), and ≥8 μg/mL (resistant). For C. glabrata, the CBPs for ANF and CSF are ≤0.12 μg/mL (susceptible), 0.25 μg/mL (intermediate), and ≥0.5 μg/mL (resistant), whereas those for MCF are ≤0.06 μg/mL, 0.12 μg/mL, and ≥0.25 μg/mL, respectively. Application of both ECVs and the lower species-specific CBPs for the echinocandins has proven useful in both resistance surveillance and clinical care and will serve as an important step in international harmonization of in vitro susceptibility testing of this important antifungal class.  相似文献   

3.
Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off‐patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species‐ or genus‐specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole‐resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.  相似文献   

4.
【目的】了解宁夏地区奶牛乳腺炎金黄色葡萄球菌(Staphylococcus aureus,SA)代表菌株的基因组序列基本特征,进一步探究其耐药基因型、毒力及进化关系,为兽医临床防治提供理论依据。【方法】采用纸片法对97株金黄色葡萄球菌临床分离株进行抗菌药物敏感性试验,同时进行葡萄球菌蛋白A(Staphylococcus aureus protein A,spa)分型、多位点序列分型(multilocus sequence typing,MLST),根据分型结果选取16株代表菌株进行全基因组测序,并对获得的测序序列进行处理分析。【结果】药敏试验结果显示97株分离株对18种抗菌药物存在不同程度的耐药,其中9株耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)对青霉素、氨苄西林、苯唑西林、头孢噻呋、磺胺异噁唑、红霉素、庆大霉素和克林霉素等8种抗菌药物完全耐药,甲氧西林敏感金黄色葡萄球菌(methicillin-sensitive Staphylococcus aureus,MSSA)菌株对青霉素、氨苄西林、磺胺异噁唑耐...  相似文献   

5.
Some antifungal agents have shown to exert effects on expression of virulent factors of Candida as the production of secretory aspartyl proteinase (Sap). In this study, we sought to determine and to compare the influence of fluconazole and voriconazole in proteinase activity of this microorganism. Thirty-one isolates obtained from oral mucosa of human immunodeficiency virus positive (HIV+) patients were used in this study. The minimal inhibitory concentrations (MIC) of fluconazole and voriconazole were determined using the broth microdilution method with RPMI 1640 medium and with yeast carbon base–bovine serum albumin (YCB–BSA) medium. The Sap activity following by digestion of BSA as substrate was determined for four Candida albicans strains arbitrarily chosen according to susceptibility (susceptible or resistant) to fluconazole or voriconazole. Besides, the SAP1 to SAP7 genes were screened by PCR for the same isolates that were determined by the Sap activity. In vitro susceptibility testing using the two media presented similar MIC values. Increased Sap activity was observed in resistant isolates on presence of drugs, but the Sap activity by susceptible isolates to azoles showed different behavior on the presence of drug. We detected the presence of SAP1 to SAP7 genes from all susceptible or resistant C. albicans isolates. The present study provides important data about the proteinase activity and the presence of genes of SAP family in fluconazole and voriconazole susceptible or resistant C. albicans isolates.  相似文献   

6.
The effluent of a pharmaceutical company was examined microbiologically. Its bacterial count was 2.15 × 105 c.f.u./ml and there was evidence of faecal contamination with MPN of > 1800. The organisms encountered included Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Serratia marcescens and Pseudomonas aeruginosa. The resistances of the 25 bacterial strains isolated from the effluent to the commonly used antibiotics were studied. About 80% of the isolates were resistant to Amoxycillin, 76% to Nitrofurantoin, 64% to Cotrimoxazole and Augmentin, 60% were resistant to Nalidixic acid, 52% were resistant to Tetracycline and Ofloxacin, while resistance of 12% was obtained for Gentamicin. Among the eight antibiotics tested, seven patterns of drug resistance were obtained and all of them were multiple-drug resistance with the number of antibiotics ranging from 2–8. All the strains of E. coli and S. aureus had high MIC values for Cloxacillin and Amoxycillin. In all, 13 strains of the bacterial isolates had evidence for the production of -lactamases. The potential of the effluent in spreading drug resistance and the public health implications are discussed.  相似文献   

7.
Compared with other developed countries, vancomycin‐resistant enterococci (VRE) are not widespread in clinical environments in Japan. There have been no VRE outbreaks and only a few VRE strains have sporadically been isolated in our university hospital in Gunma, Japan. To examine the drug susceptibility of Enterococcus faecalis and nosocomial infection caused by non‐VRE strains, a retrospective surveillance was conducted in our university hospital. Molecular epidemiological analyses were performed on 1711 E. faecalis clinical isolates collected in our hospital over a 6‐year period [1998–2003]. Of these isolates, 1241 (72.5%) were antibiotic resistant and 881 (51.5%) were resistant to two or more drugs. The incidence of multidrug resistant E. faecalis (MDR‐Ef) isolates in the intensive care unit increased after enlargement and restructuring of the hospital. The major group of MDR‐Ef strains consisted of 209 isolates (12.2%) resistant to the five drug combination tetracycline/erythromycin/kanamycin/streptomycin/gentamicin. Pulsed‐field gel electrophoresis analysis of the major MDR‐Ef isolates showed that nosocomial infections have been caused by MDR‐Ef over a long period (more than 3 years). Multilocus sequence typing showed that these strains were mainly grouped into ST16 (CC58) or ST64 (CC8). Mating experiments suggested that the drug resistances were encoded on two conjugative transposons (integrative conjugative elements), one encoded tetracycline‐resistance and the other erythromycin/kanamycin/streptomycin/gentamicin‐resistance. To our knowledge, this is the first report of nosocomial infection caused by vancomycin‐susceptible MDR‐Ef strains over a long period in Japan.  相似文献   

8.
A total of 143 strains of S. typhimurium isolated from clinical cases in Kuwait were investigated for drug resistance. Multidrug resistance (3 or more drugs) was seen in 76.9% of the strains. The common resistance patterns were ASuT (16), AKSuT (20), ASSuT (14), CKSSuT (14), ACKSSuT (10), ACGKSSuT (15) and ACKGSSuTTm (8). MIC of resistant strains was usually high. Sixteen isolates were examined for the transferability of the resistance. All had R-plasmids, both autotransferable and non-autotransferable which could be mobilised by factor X.  相似文献   

9.
Candida species that show an increasing number of clinical and/or microbiological resistance to several antifungals and are the most common agents of invasive fungal infections. The aim of this study was to investigate the in vitro susceptibility of Candida blood isolates to antifungal agents (amphotericin B, fluconazole, itraconazole, and voriconazole) by comparative use of the CLSI reference microdilution method and Etest. Four hundred Candida blood isolates (215 Candida albicans, 185 non-albicans Candida strains) were included in the study. The broth microdilution test was performed according to the CLSI M27 A2 document. Etest was carried out according to the manufacturer’s instructions. The MIC results obtained with reference microdilution were compared with those obtained with the Etest by using percent and categorical agreements. According to MIK90 values, voriconazole was the most active and itraconazole was the least active drug in vitro against all Candida species. Other than voriconazole, statistically significant differences were found when the susceptibility of Candida albicans and non-albicans Candida spp. to amphotericin B, fluconazole, and itraconazole were compared. These antifungal agents were found to be more active to C. albicans. Among the non-albicans Candida species, the lowest MIC values were obtained for Candida parapsilosis isolates. When the standard method was compared with Etest, the total agreement was higher for C. albicans than for non-albicans species, especially for fluconazole and voriconazole. In view of the findings, it was concluded that itraconazole showed the lowest activity against all Candida species. Etest could be an alternative method in assessing the in vitro antifungal susceptibility of Candida spp., but it is more convenient to use the microdilution method for studying in vitro susceptibility of non-albicans species, in particular for those possessing high MIC values against azoles.  相似文献   

10.
Antifungal susceptibility testing of Candida against fluconazole has been standardized by both the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Both CLSI and EUCAST have developed clinical breakpoint (CBP) criteria for fluconazole, but these differ in both magnitude and target species. Studies using the EUCAST method have also defined wild-type minimum inhibitory concentration (MIC) distributions and epidemiologic cutoff values (ECVs or ECOFFs) for the common species of Candida. The ECVs serve as a sensitive means of discriminating wild-type strains from those with acquired resistance mechanisms and include MICs of 1 μg/mL for C. albicans, 2 μg/mL for C. tropicalis and C. parapsilosis, 32 μg/mL for C. glabrata, and 128 μg/mL for C. krusei. Because the CLSI CBPs may be too insensitive to detect emerging resistance among strains of C. albicans, C. tropicalis, and C. parapsilosis, and bisect the WT MIC distribution of C. glabrata, we sought to establish the wild-type MIC distribution and ECVs for fluconazole and Candida spp. The establishment of the wild-type MIC distributions and ECVs for fluconazole using CLSI methods will be useful in resistance surveillance and may prove to be an important step in the development of species-specific CBPs for this important antifungal agent.  相似文献   

11.
Oropharyngeal candidiasis caused by various species of Candida is one of the most common infections in HIV seropositive or AIDS patients. Drug resistance among these yeasts is an increasing problem. We studied the frequency of resistance profile to fluconazole, itraconazole, ketoconazole, amphotericin B and terbinafine of 137 isolates of Candida sp. From HIV positive or AIDS patients with oropharyngeal candidiasis at Instituto de Inmunología, U.C.V. and the Hospital “Jose Ignacio Baldó”, Caracas Venezuela, using the well diffusion susceptibility test (Magaldi et al.). We found that nearly 10% of C. albicans isolates were primarily fluconazole resistant, 45% of C. albicans isolates from patients with previous treatment were resistant to fluconazole, of which 93% showed cross-resistance to itraconazole, and even about 30% of C. tropicalis (n = 13) were resistant to fluconazole and/or itraconazole. To this respect, several recent reports have been described antifungal cross-resistance among azoles. Therefore, we consider that C. tropicalis should be added to the growing list of yeast in which antifungal drug resistance is common. This report could be useful for therapeutic aspect in AIDS patients with oral candidiasis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Drug resistance in Mycobacterium tuberculosis is a global problem, with major consequences for treatment and public health systems. As the emergence and spread of drug‐resistant tuberculosis epidemics is largely influenced by the impact of the resistance mechanism on bacterial fitness, we wished to investigate whether compensatory evolution occurs in drug‐resistant clinical isolates of M. tuberculosis. By combining information from molecular epidemiology studies of drug‐resistant clinical M. tuberculosis isolates with genetic reconstructions and measurements of aminoglycoside susceptibility and fitness in Mycobacterium smegmatis, we have reconstructed a plausible pathway for how aminoglycoside resistance develops in clinical isolates of M. tuberculosis. Thus, we show by reconstruction experiments that base changes in the highly conserved A‐site of 16S rRNA that: (i) cause aminoglycoside resistance, (ii) confer a high fitness cost and (iii) destabilize a stem‐loop structure, are associated with a particular compensatory point mutation that restores rRNA secondary structure and bacterial fitness, while maintaining to a large extent the drug‐resistant phenotype. The same types of resistance and associated mutations can be found in M. tuberculosis in clinical isolates, suggesting that compensatory evolution contributes to the spread of drug‐resistant tuberculosis disease.  相似文献   

13.
Aims: Determine whether certain, natural phenolic compounds enhance activity of commercial antifungal drugs against yeast strains of Candida and Cryptococcus neoformans. Methods and Results: Twelve natural phenolics were examined for fungicidal activity against nine reference strains of Candida and one of C. neoformans. Six compounds were selected for synergistic enhancement of antifungal drugs, amphotericin B (AMB), fluconazole (FLU) and itraconazole (ITR). Matrix assays of phenolic and drug combinations conducted against one reference strain, each, of Candida albicans and C. neoformans showed cinnamic and benzoic acids, thymol, and 2,3‐ and 2,5‐dihydroxybenzaldehydes (‐DBA) had synergistic interactions depending upon drug and yeast strain. 2,5‐DBA was synergistic with almost all drug and strain combinations. Thymol was synergistic with all drugs against Ca. albicans and with AMB in C. neoformans. Combinations of benzoic acid or thymol with ITR showed highest synergistic activity. Of 36 combinations of natural product and drug tested, none were antagonistic. Conclusions: Relatively nontoxic natural products can synergistically enhance antifungal drug activity, in vitro. Significance and Impact of the Study: This is a proof‐of‐concept, having clinical implications. Natural chemosensitizing agents could lower dosages needed for effective chemotherapy of invasive mycoses. Further studies against clinical yeast strains and use of animal models are warranted.  相似文献   

14.
Candida infections are most prominent among fungal infections majorly target immunocompromised and hospitalized patients and cause significant morbidity and mortality. Candida albicans is the notorious and most prevalent among all pathogenic Candida strains. Its emerging resistance toward available antifungal agents making it hard to tackle and emerging as global healthcare emergency. Simultaneously, 1,2,3-triazole nucleus is a privileged scaffold that is gaining importance in antifungal drug development due to being a prominent bioactive linker and isostere of triazole based antifungal class core 1,2,4-triazole. Numerous reports have been updated in scientific literature in last few decades related to utilization of 1,2,3-triazole nucleus in antifungal drug development against Candida albicans. Present review will shed light on various preclinical studies focused on development of 1,2,3-triazole derivatives targeting Candida albicans along with brief highlight on clinical trials and newly approved drugs. Structure-activity relationship has been precisely discussed for each architect along with future perspective that will help medicinal chemists in design and development of potent antifungal agents for tackling infections derived from Candida albicans.  相似文献   

15.
Non-O1/non-O139 nontoxigenic Vibrio cholerae associated with cholera-like diarrhea has been reported in Kolkata, India. However, the property involved in the pathogenicity of these strains has remained unclear. The character of 25 non-O1/non-O139 nontoxigenic V. cholerae isolated during 8 years from 2007 to 2014 in Kolkata was examined. Determination of the serogroup showed that the serogroups O6, O10, O35, O36, O39, and O70 were represented by two strains in each serogroup, and the remaining isolates belonged to different serogroups. To clarify the character of antibiotic resistance of these isolates, an antibiotic resistance test and the gene analysis were performed. According to antimicrobial drug susceptibility testing, 13 strains were classified as drug resistant. Among them, 10 strains were quinolone resistant and 6 of the 13 strains were resistant to more than three antibiotics. To define the genetic background of the antibiotic character of these strains, whole-genome sequences of these strains were determined. From the analysis of these sequences, it becomes clear that all quinolone resistance isolates have mutations in quinolone resistance-determining regions. Further research on the genome sequence showed that four strains possess Class 1 integrons in their genomes, and that three of the four integrons are found to be located in their genomic islands. These genomic islands are novel types. This indicates that various integrons containing drug resistance genes are spreading among V. cholerae non-O1/non-O139 strains through the action of newly generated genomic islands.  相似文献   

16.
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.  相似文献   

17.
The emergence of drug resistant Mycobacterium tuberculosis has become a global threat to tuberculosis (TB) prevention and control efforts. This study aimed to determine the drug resistance profiles and DNA fingerprints of M. tuberculosis strains isolated from patients with relapsed or retreatment pulmonary TB in Chiang Rai province in northern Thailand. Significant differences in multidrug resistance (MDR) (P = 0.025) and resistance to isoniazid (P = 0.025) and rifampin (P = 0.046) between first and second registrations of patients with retreatment TB were found. However, there were no significant differences in resistance to any drugs in patients with relapsed TB. The rate of MDR‐TB strains was 12.2% among new patients at first registration, 22.5% among patients with recurrence who had previously undergone treatment at second registration and 12.5% at third registration. Two retreatment patients whose initial treatment had failed had developed MDR‐TB with resistance to all TB drugs tested, including rifampin, isoniazid, streptomycin and ethambutol. IS6110‐RFLP analysis revealed that 66.7% (10/15 isolates) of MDR‐TB belonged to the Beijing family. In most cases, IS6110‐RFLP patterns of isolates from the same patients were identical in relapse and retreatment groups. However, some pairs of isolates from retreatment patients after treatment failure had non‐identical IS6110‐RFLP patterns. These results suggest that, after failure and default treatment, patients with retreatment tuberculosis have a significantly greater risk of MDR‐TB, isoniazid and rifampin resistance than do other patients.  相似文献   

18.
19.
Barada G  Basma R  Khalaf RA 《Mycopathologia》2008,165(3):115-125
The present study involves collecting 125 isolates labeled as C. albicans from five different Lebanese hospitals and utilizing the microsatellite genotyping test to determine the following: first, the accuracy of hospital identification by comparing microsatellite results to hospital results. Second, the frequency and genotypes of infectious strains present relative to tissue and hospital location- a possible indicator of nosocomial infection, and third, a possible relationship between lack of microsatellite heterozygosity to azole resistance. Our results showed that the error in hospital identification varied from 2 to 33%, averaging at 7%, with the highest identification error in stool. Misidentified isolates were mainly Candida tropicalis followed by C. glabrata and C. parapsilosis. Strains with similar genotypes were also found to occur within certain hospitals suggesting the possibility of nosocomial infection. Finally, a relationship between lack of heterozygosity and azole resistance was observed since nine out of 10 homozygous isolates sharing a common allele with a heterozygote strain were sensitive to all drugs tested, whereas the homozygous genotype was resistant to at least one drug.  相似文献   

20.
A survey of the occurrence of strains of Erwinia amylovora resistant to streptomycin in certain Egyptian pear orchards was earned out during April and May 1988. Twenty-two isolates out of 604 isolates collected from 11 orchards showed resistance to streptomycin. All the streptomycin resistant (Strr) strains isolated in the present work were resistant to high levels of streptomycin with minimal inhibitory concentrations ranging from 1000 to 3000 μg/ml. The occurrence of Strr strains in Egypt is still limited and the population of resistant strains was at relatively low level. However, such occurrence of E. amylovora with resistance to streptomycin is a potentially serious situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号