首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variability in salinity is an environmental stressor that crab megalopae encounter as they are carried by tides and currents throughout Chincoteague Bay. We exposed blue crab (Callinectes sapidus) and fiddler crab (Uca spp.) megalopae to abrupt salinity changes from 10 to 31 ppt and measured their oxygen usage. It was hypothesized that the megalopae would cope with the changes in a manner reflective of the documented abilities and tolerances of adult crabs. It was also hypothesized that lower salinities would have a particularly detrimental effect on the megalopae reflected by both increased oxygen usage and mortality. The megalopae of both species did exhibit an increase in oxygen use at lower salinities, although the effect was more pronounced during the initial transition and decreased during acclimation. The megalopae mirrored the adult responses, with blue crab larvae consuming more oxygen per mg of wet weight at lower salinities, whereas fiddler crab larval oxygen consumption was relatively uniform at all salinities. Mortality of some blue crab postlarvae was observed at 10 ppt while all larval fiddler crabs survived. Coupled with the introduction of additional fresh water into the global water system, these results indicate that further investigation into this subject is necessary.  相似文献   

2.
Effects of salinity on the survival, growth, and development of stable fly, Stomoxys calcitrans (L.), were investigated in the laboratory. Larvae failed to develop to pupation when reared in media containing a salinity of 40 parts per thousand (ppt) sodium chloride (NaCl). Maximum salinity supporting larval development equaled the salinity of seawater (34 ppt); the larval LC90 was 24.2 ppt. Deleterious effects of high salinity decreased as larvae matured. Six-day-old larvae reared at a salinity of 34 ppt weighed 79% less than controls, compared with a 36% difference in 9-d-old larvae; by pupation, the difference was only 24%. Salinity did not influence the duration of larval, pupal, or adult stages. Survival of pupae was unimpaired despite a slight increase in number of pupal deformities, and normal adults emerged. Eggs were highly tolerant to saline. They hatched at salinity concentrations lethal to larvae; greater than 50% hatch occurred even when eggs were maintained at 80 ppt NaCl. Sensitivity of larvae to salinities close to that of seawater might be important for control of stable flies inhabiting marine areas.  相似文献   

3.
Growth and survival of replicate batches of African sharptooth catfish (Clarias gariepinus) larvae were monitored in 0, 2.5, 5.0, 7.5 and 10 ppt salinity. No significant differences in mortality or growth rate were evident between 0 and 5 ppt salinity. At 7.5 ppt mortality rate was higher and larval growth rate declined in comparison to the lower salinities. At 10 ppt all larvae died within 48 hours. The condition factor of the larvae similar between 0–2.5 ppt and displayed a declining trend between 2.5–7.5 ppt. Osmoconcentratkm of blood plasma of C. gariepinus in fresh water was 280 ± 20 mOsm/kg which is equivalent to 9.5 ppt salinity. It was concluded that 0–2.5 ppt is the optimal sclinity range for larval rearing and that short-term exposure to higher salinities (2.5–7.5 ppt) could be effective in the treatment of ectoparasitic diseases.  相似文献   

4.
Acute salinity tolerance limits for the estuarine spawning spotted seatrout, Cynoscion nebulosus (Cuvier). were evaluated by examining 18 h survival of larvae in an extensive range of salinity treatments (0 to 56 ppt). Larvae from eggs spawned in two different salinities (24 and 32 ppt) as well as larvae acclimated in hypersaline and brackish waters were compared. Both upper and lower salinity tolerance limits showed an age-linked pattern, decreasing to a minimum tolerance range (6.4 to 42.5 ppt) at age 3 days after hatching (at 28 o C) and increasing to the widest range tolerated (1.9 to 49.8 ppt) on the last day tested (age 9 days). Acclimation to hyposaline conditions was demonstrated by larvae spawned at 32 ppt although significant hypersaline acclimation could not be demonstrated. Altered upper limits to the range tolerated by larvae from different spawning salinities indicated parental and/or early acclimation effects are important. Consistently greater vulnerability to both hyper- and hyposaline conditions at age 3 days after hatching was observed in all tests conducted. Exposures related to the onset of feeding at this time are likely explanations for this reduced tolerance.  相似文献   

5.
The large Asian gastropod mollusc Rapana venosa Valenciennes 1846 (Neogastropoda, formerly Muricidae, currently Thaididae) is reported for eastern North America in the lower Chesapeake Bay and James River, Virginia, USA. This record represents a transoceanic range expansion for this carnivorous species. This species has previously been introduced to the Black Sea, Adriatic Sea, and Aegean Sea. Ballast water transport of larval stages from the eastern Mediterranean or Black Sea is the suspected vector of introduction into the Chesapeake Bay; 650 adult specimens in the size range 68–165mm shell length (SL) have been collected from hard sand bottom in depths ranging from 5 to 20m at salinities of 18–28ppt. The absence of small individuals from local collections is probably related to bias in collection methods. Age of the specimens could not be determined. R. venosa is probably capable of reproducing in the Chesapeake Bay. Egg cases of R. venosa were collected from Hampton Roads, a section of the James River, in August 1998, and hatched over a 21-day period under laboratory conditions to release viable bilobed veliger larvae. Four lobed larvae developed 4 days post-hatching and apparent morphological metamorphic competency was observed 14–17 days post-hatching. Despite the provision of live substrates and/or metamorphic inducers no metamorphosis to a crawling form was observed for larvae cultured on the monospecific diet. In work performed during 1999 settlement was observed for larvae cultured on a diet of mixed flagellates and diatoms and subsequently exposed to local epifaunal species. Salinity tolerance tests were performed on larvae at 1–6 days post-hatching. No deleterious effects were observed at salinities as low as 10ppt with limited survival to 7ppt at 6 days post-hatch. Current distribution is considered in context with larval salinity tolerance tests and literature describing native Asian and introduced populations to assess potential for establishment and further range extension both within the Chesapeake Bay and along the Atlantic coast of North America. Establishment within the Bay mainstem to the Rappahannock River with minor incursions into the mouths of the southerly subestuaries is considered feasible. A projected breeding range on the Atlantic seaboard extending from Cape Cod to Cape Hatteras is considered as tenable. Potential impact of R. venosa on commercially valuable shellfish stocks throughout the projected range is cause for serious concern. Boring by the polychaete Polydora websteri is more prevalent in the younger whorls of the shell, and absent in shell laid down later in life. This pattern suggests that juvenile animals may prefer hard substrates and not adopt an infaunal lifestyle until a size in excess of 50mmSL, or after reaching maturity.  相似文献   

6.
Narita  Tetsuya 《Hydrobiologia》2001,449(1-3):141-148
The larval stages of the mud prawn Upogebia africana were reared in the laboratory, from hatchings of females collected in the Mgazana estuary, South Africa. The larvae were tested for the combined effects of temperature and salinity in a factorial designed experiment, using 3 females and 2 replicates of 10 larvae per combination. Combinations were made from 5 temperatures (15, 20, 25, 30 and 35 °C) and 4 salinities (15, 25, 35 and 45). Results were tested by ANOVA and multiple regression was applyed to generate contour models by polynomial equation. Results showed that U. africana develops optimally in near to sea water salinity at around 25 °C, with slightly wider tolerance to low salinity in zoeal stage I, and with increased moult rate at lower salinity in late stages. A comparison with similar experimental results for other species is made, namely in view of the life cycle strategies for dispersal and return migration.  相似文献   

7.
Abstract. We studied the effects of brackish water on larval attachment, events of metamorphosis, and juvenile mortality in three colonial ascidian species that live in a Florida coastal lagoon. Eudistoma olivaceum and Eudistoma hepaticum are restricted in their adult distribution to areas of relatively high and constant salinity near inlets, whereas Ecteinascidia turbinata extends more than 20 km into the Indian River, where salinity can be much more variable. In all three species, metamorphosis proceeded more quickly at 33 ppt than at lower salinities. The thresholds for successful metamorphosis differed among species in a manner that corresponded to the adult distributions, with E. turbinata being capable of completing metamorphosis at salinities as low as 22 ppt, E. hepaticum as low as 24 ppt, and E. olivaceum as low as 26 ppt. Larvae of both Eudistoma species delayed settlement in very low salinity water, whereas those of E. turbinata settled very quickly, then failed to complete metamorphosis. Juvenile mortality at salinities lower than 22 ppt was 100% for all three species. Survival in salinities higher than 22 ppt was strongly correlated with salinity in E. olivaceum and E. hepaticum , but not E. turbinata.  相似文献   

8.
Shallow-water coastal areas suffer frequent reductions in salinity due to heavy rains, potentially stressing the organisms found there, particularly the early stages of development (including pelagic larvae). Individual adults and newly hatched larvae of the gastropod Crepipatella peruviana were exposed to different levels of salinity stress (32(control), 25, 20 or 15), to quantify the immediate effects of exposure to low salinities on adult and larval behavior and on the physiological performance of the larvae. For adults we recorded the threshold salinity that initiates brood chamber isolation. For larvae, we measured the impact of reduced salinity on velar surface area, velum activity, swimming velocity, clearance rate (CR), oxygen consumption (OCR), and mortality (LC50); we also documented the impact of salinity discontinuities on the vertical distribution of veliger larvae in the water column. The results indicate that adults will completely isolate themselves from the external environment by clamping firmly against the substrate at salinities ≤24. Moreover, the newly hatched larvae showed increased mortality at lower salinities, while survivors showed decreased velum activity, decreased exposed velum surface area, and decreased mean swimming velocity. The clearance rates and oxygen consumption rates of stressed larvae were significantly lower than those of control individuals. Finally, salinity discontinuities affected the vertical distribution of larvae in the water column. Although adults can protect their embryos from low salinity stress until hatching, salinities <24 clearly affect survival, physiology and behavior in early larval life, which will substantially affect the fitness of the species under declining ambient salinities.  相似文献   

9.
ABSTRACT

Although the false mussel Mytilopsis sallei Recluz, 1849 is recognised as an aggressive invasive species, its populations in several estuaries in Thailand are restricted to small areas. A salinity gradient is a major characteristic of its habitat, hence the effect of various salinity levels (0–40?ppt) on the mortality of larvae, juveniles and adults of M. sallei was investigated. Condition Indices of adults reared at different salinity levels for two months were measured. Spatial and temporal variations of salinity and false mussel abundance in a canal with a salinity gradient were also monitored. After an acute (48?h) test, survival of larvae was highest at salinity levels of 12.5 and 16.25?ppt and decreased at lower and higher levels. Juveniles survived at all salinity levels, but most adults died in the first 24?h at a salinity of 40?ppt, while condition indices were lowest at salinity levels of 30 and 35?ppt. In the field survey, highest false mussel abundance was consistently found at the middle part of the canal with mid-range salinity. The results suggested that salinity is a determinant of survival in M. sallei larvae and potentially regulates the dispersal success of false mussels. However, the importance of salinity was marginal in the later stages of its life history.  相似文献   

10.
The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.  相似文献   

11.
Three populations of non-native Asian swamp eels are established in peninsular Florida (USA), and comprise two different genetic lineages. To assess potential for these fish to penetrate estuarine habitats or use coastal waters as dispersal routes, we determined their salinity tolerances. Swamp eels from the three Florida populations were tested by gradual (chronic) salinity increases; additionally, individuals from the Miami population were tested by abrupt (acute) salinity increases. Results showed significant tolerance by all populations to mesohaline waters: Mean survival time at 14 ppt was 63 days. The Homestead population, a genetically distinct lineage, exhibited greater tolerance to higher salinity than Tampa and Miami populations. Acute experiments indicated that swamp eels were capable of tolerating abrupt shifts from 0 to 16 ppt, with little mortality over 10 days. The broad salinity tolerance demonstrated by these experiments provides evidence that swamp eels are physiologically capable of infiltrating estuarine environments and using coastal waters to invade new freshwater systems.  相似文献   

12.
ABSTRACT: BACKGROUND: Ontogenetic variation in salinity adaptation has been noted for the blue crab, Callinectes sapidus, which uses the export strategy for larval development: females migrate from the estuaries to the coast to spawn, larvae develop in the ocean, and postlarvae (megalopae) colonize estuarine areas. We hypothesized that C. sapidus larvae may be stenohaline and have limited osmoregulatory capacity which compromises their ability to survive in lower salinity waters. We tested this hypothesis using hatchery-raised larvae that were traceable to specific life stages. In addition, we aimed to understand the possible involvement of AQP-1 in salinity adaptation during larval development and during exposure to hyposalinity. RESULTS: A full-length cDNA sequence of aquaporin (GenBank JQ970426) was isolated from the hypodermis of the blue crab, C. sapidus, using PCR with degenerate primers and 5[PRIME] and 3[PRIME] RACE. The open reading frame of CasAQP-1 consists of 238 amino acids containing six helical structures and two NPA motifs for the water pore. The expression pattern of CasAQP-I was ubiquitous in cDNAs from all tissues examined, although higher in the hepatopancreas, thoracic ganglia, abdominal muscle, and hypodermis and lower in the antennal gland, heart, hemocytes, ovary, eyestalk, brain, hindgut, Y-organs, and gill. Callinectes larvae differed in their capacity to molt in hyposalinity, as those at earlier stages from Zoea (Z) 1 to Z4 had lower molting rates than those from Z5 onwards, as compared to controls kept in 30 ppt water. No difference was found in the survival of larvae held at 15 and 30 ppt. CasAQP-1 expression differed with ontogeny during larval development, with significantly higher expression at Z1-2, compared to other larval stages. The exposure to 15 ppt affected larval-stage dependent CasAQP-1 expression which was significantly higher in Z2- 6 stages than the other larval stages. CONCLUSIONS: We report the ontogenetic variation in CasAQP-1 expression during the larval development of C. sapidus and the induction of its expression at early larval stages in the exposure of hyposalinity. However, it remains to be determined if the increase in CasAQP-1 expression at later larval stages may have a role in adaptation to hyposalinity.  相似文献   

13.
The two prawn species Palaemon adspersus Rathke and P. elegans Rathke differ in their distribution patterns in estuaries: P. adspersus occurs at lower salinities and also extends further into the Baltic than P. elegans . Yet, at low salinities adult survival does not differ between the two species. Reproductive success was, however, substantially reduced in P. elegans at low salinity, but not in P. adspersus . Berried P. elegans females from the Swedish west coast hatched significantly fewer clutches at 10%‰ than did P. adspersus females from the same locality. Furthermore, larval survival in P. elegans was significantly lower at 5 and 7.5‰ than in P. adspersus . At higher salinities (10 and 24.5‰) no interspecific differences in larval survival were found, except in one experiment where P. elegans larvae had a lower mortality. It is concluded that the different estuarine distributions of the two palaemonid prawn species result from these interspecific differences in reproductive success at low salinity.  相似文献   

14.
Summary

Reductions in salinity can have adverse effects on larval development and larval survival in some invertebrate taxa but not others. Salinity tolerance of larvae may be particularly important in echinoderms because they are both poor ion regulators and stenohaline. I examined the effect of six levels of salinity (15, 18, 21, 24, 27 and 33 PSU) on survival and rate of development of larvae in the subtropical sea urchin Echinometra lucunter. In the short-term, mortality rate was significantly lower in 33 PSU than in all other salinities except 27 PSU, and it was significantly greater in 15 and 18 PSU than in all higher salinities. In the long-term, daily and cumulative mortality were significantly greater in 15 PSU than in most other salinities over 11 days of development (except for cumulative mortality in 18 PSU). They were significantly greater in 18 PSU than in 21 PSU or 33 PSU over a period of 13 days. Furthermore, daily mortality was significantly greater in 18 PSU than in 24 PSU or 27 PSU at 13 d after fertilization. Daily and cumulative mortality were significantly lower in 33 PSU than in 21, 24 or 27 PSU over a period of 17 days. Although in the control (33 PSU) 75% of larvae completed development to the 8-arm stage at 35 d, no larvae developed further than the 4-arm stage in 18, 21, 24 or 27 PSU; in 15 PSU, ~60% of larvae did not develop further than swimming blastulae. Since prolonged exposure to salinities as high as 27 PSU (frequently recorded in the adult habitat) can result in great larval losses, adaptive behaviours that prevent larvae from entering water layers of low salinity will enhance their chance for survival.  相似文献   

15.
Both phenotypic plasticity and local genetic adaptation may contribute to a species’ ability to inhabit different environmental conditions. While phenotypic plasticity is usually considered costly, local adaptation takes generations to respond to environmental change and may be constrained by strong gene flow. The majority of marine species have complex life-cycles with pelagic stages that might be expected to promote gene flow and plastic responses, and yet several notable examples of local adaptation have been found in species with broadcast larvae. In the ascidian, Ciona intestinalis (Linnaeus, 1767),—a common marine species with broadcast spawning and a short larval stage—previous studies have found marked differences in salinity tolerance of early life-history stages among populations from different salinity regimes. We used common-garden experiments to test whether observed differences in salinity tolerance could be explained by phenotypic plasticity. Adult ascidians from two low salinity populations [2–5 m depth, ~25 practical salinity units (PSU)], and two full salinity populations (25–27 m depth, ~31 PSU) were acclimated for 2–4 weeks at both 25 and 31 PSU. Gametes were fertilized at the acclimation salinities, and the newly formed embryos were transferred to 10 different salinities (21–39 PSU) and cultured to metamorphosis. Adult acclimation salinity had an overriding and significant effect on larval metamorphic success: tolerance norms for larvae almost fully matched the acclimation salinity of the parents, independent of parental origin (deep or shallow). However we also detected minor population differences that could be attributed to either local adaptation or persistent environmental effects. We conclude that differences in salinity tolerance of C. intestinalis larvae from different populations are driven primarily by transgenerational phenotypic plasticity, a strategy that seems particularly favourable for an organism living in coastal waters where salinity is less readily predicted than in the open oceans.  相似文献   

16.
At a time when global climate changes are forcing life to adapt to a warming and salinity-changing environment, it is essential to understand how future changes in ocean chemistry will affect species. This study evaluates the combined effects of temperature and salinity on survival and development of Upogebia pusilla larvae. Combinations were made from three temperatures (18, 23, and 28°C) and three salinities (15, 25, and 35). Survival, larval duration and megalopa size were compared between treatments. U. pusilla larvae developed optimally in the highest salinity (35) and higher temperatures (23–28°C). Low salinities and temperatures did not support larval survival and development, with salinity being the main restricting factor for survival, while temperature affected mainly the duration of the larval stages. Larvae at higher temperatures (23–28°C) presented a higher development rate but no differences were found in megalopa size.  相似文献   

17.
In the larval stages of three euryhaline species of the genus Armases, we tested if changes in biomass (dry mass, W; protein; lipid) under hyposmotic stress were related to their salinity tolerance, capabilities of osmoregulation, and migration patterns. As model species, we compared Armases miersii, which breeds in supratidal rock pools, the riverine crab Armases roberti (showing a larval export strategy), and Armases ricordi, whose larvae probably develop in coastal marine waters. At each stage, larvae were exposed to different salinities (selected according to previous information on larval survival; range: 5 per thousand-32 per thousand for A. miersii, 10 per thousand-32 per thousand for A. roberti, and 15 per thousand-32 per thousand for A. ricordi). Biomass was measured in early postmoult and intermoult. The larvae of the strongly osmoregulating species A. miersii, which develop in habitats with highly variable salinity conditions, showed the smallest variations in biomass. The effect on A. roberti varied during its ontogeny: the Zoea I and the Megalopa, which carry out downstream and upstream migrations, respectively, showed lower biomass variations than the intermediate zoeal instars, which develop in coastal waters. The larvae of A. ricordi showed generally the highest variations in biomass, reflecting poor adaptation to salinity variations. In addition, a common pattern was found for these estuarine species: the maximum of biomass shifted during ontogeny from 32 per thousand to 25 per thousand, reflecting changes of the iso-osmotic point. The ontogeny of osmoregulation reflected ontogenetic migration patterns, which allow for avoiding detrimental effects of salinity variations.  相似文献   

18.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   

19.
Summary The gammarid amphipod Onisimus litoralis, which inhabits arctic and subarctic intertidal and under-ice habitats, is a euryhaline hyperosmotic regulator. It survives 10 d exposures to salinities from 5 to 55 ppt. It hyperregulates its hemolymph osmolality during 3 h exposures to dilutions of 33 ppt seawater and remains hyperosmotic for at least 2 w. The hemolymph is isosmotic to the medium after 12 h exposures to salinities higher than 33 ppt. The gammarid amphipod Anonyx nugax, which inhabits arctic and subarctic subtidal areas, tolerates salinities from 23 to 45 ppt with little mortality. Unlike Onisimus, however, it is an osmoconformer and its hemolymph becomes isosmotic to all dilute salinities within its tolerance range after 12 h and to concentrated media after 3 h. The salinity tolerances and osmoregulatory abilities of both species are reflected in their distributions in the field.  相似文献   

20.
The response surface method was used to study the effects of temperature, salinity and Cd contamination on the development of fertilized eggs ofMytilus edulis from the western Baltic Sea to the veliger stage as well as on growth and cumulative mortality of a veliger population. The reactions observed differ considerably with reference to temperature and salinity. This is discussed in respect to the mode of life of the larvae and to the environmental conditions of the western Baltic Sea. Cd only slightly influences various temperature-dependent life functions, but strongly modifies those depending on salinity. The development optimum is shifted to higher salinities with increasing Cd concentrations of the medium, while that of survival and growth is shifted to lower salinities. These factor interactions modify the tolerance limits. In addition, the rates of factor interactions on the larval stages change with the degree of development. The trochophora stage proves to be most sensitive to the factors studied. A significant influence of cadmium on different life functions is found from concentrations of about 50 ppb on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号