首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to examine effects of exogenous ovine growth hormone (oGH) on growth and reproductive traits of ewe lambs. In the first trial, 30 Debouillet ewe lambs (4 months old) received either 0 or 2.5 mg, s.c. of oGH (Day 0 = first day of 98-day treatment). Ovarian cyclicity was determined by monitoring serum progesterone. Efficiency of gain (first 50 days of treatment) was more (P < 0.10) desirable in oGH-treated animals, but did not differ (P > 0.20) between groups during the last 48 days of treatment. Serum GH in alternate-day samples was elevated five-fold (P < 0.01). First estrus occurred 10 days earlier (P = 0.14) in oGH-treated ewe lambs. In a second trial, 45 ewe lambs were evenly divided into three groups receiving 0 mg of oGH (CON; 50 injections), 2.5 mg of oGH (GH98, 50 injections) or 25 injections containing 2.5 mg of oGH followed by 25 injections of 0 mg of oGH (GH48) on alternate days for 98 days before a breeding season. Ewe lambs receiving GH48 had higher (P < 0.05) gains the first 24 days than those receiving CON or GH98. Ewes receiving GH48 demonstrated first estrus (P = 0.06) 22 days before control ewes and 28 days before GH98 ewes. Other reproductive traits did not differ (P > 0.25). Serum GH was greatly elevated by injections of exogenous oGH, but neither serum insulin nor prolactin was affected. Short-term elevation of serum GH resulting from exogenous oGH injections marginally enhances reproductive and growth responses, but does not induce major changes in these traits in ewe lambs after 4 months of treatment.  相似文献   

2.
The aim of the study was to elucidate the effects of ovarian hormones on somatostatin in the hypothalamic neurons and growth hormone (GH) secretion during the postnatal growth and development of sheep. The study was performed on 9-week-old (infantile) lambs that were ovary-intact (OVI) or ovariectomized (OVX) at 39 days of age, and on 16-week-old (juvenile) lambs that were OVI or OVX at 88 days of age. Hormones in neurons and somatotropic cells were assayed with immunohistochemistry and radioimmunoassay. Following ovariectomy, immunoreactive somatostatin was more abundant (p<0.05) in the hypothalamus of infantile lambs, whereas in juvenile lambs it was more abundant (p<0.05) in the periventricular nucleus but reduced (p<0.01) in the median eminence. In contrast to somatostatin in the hypothalamus, the content of immunoreactive GH in the hypophysis was less in OVX infantile lambs, but greater in OVX juvenile lambs (p<0.05). Basal blood serum concentrations of GH were greater (p<0.05) in OVX infantile lambs, whereas in OVX juvenile lambs, mean and basal concentrations of GH and amplitude of GH pulses were less than in OVI lambs (p<0.05). The postnatal increase in body weight was greatest in middle-late infancy (p<0.01). The body weight did not differ (p>0.05) between OVI and OVX lambs. In conclusion, ovarian factors may inhibit the GH secretion in infantile lambs but enhance the GH secretion in juvenile lambs. Transition to puberty, as related to the growth rate, appears to be due mainly to change in gonadal influence on the somatostatin neurosecretion. A stimulation of somatostatin output in the median eminence by gonadal factors in infancy is followed by a stimulation of somatostatin accumulation after infancy. Thus, ovarian factors modulate mechanisms within the somatotropic system of lambs to synchronize the somatic growth with sexual development.  相似文献   

3.
Twenty-four 6-mo-old ewe lambs received one of two ovine prolactin (oPRL) treatments 28 d before fall breeding. Beginning on the first day of treatment (Day 0), 12 lambs received a subcutaneous injection (12 ml) of a carrier vehicle (0 mg oPRL) on alternate days for 28 d while 12 lambs received injections containing 5 mg oPRL. On Days 0 and 28, jugular blood was collected from six lambs in each group before treatment and at 30-min intervals for 6 h thereafter. Neither feed intake, efficiency of gain nor animal weights differed (P > 0.20) between groups. One hour after treatment on Day 0, ewe lambs receiving 5 mg oPRL had greater (P < 0.10) serum PRL levels than did controls (121.9 and 61.5 +/- 24.7 ng/ml, respectively). Differences in serum PRL persisted throughout remaining sampling intervals on both Days 0 and 28. Serum samples obtained on alternate days during the 28-d treatment period revealed no differences (P > 0.20) in PRL concentrations between control (48.3 +/- 5.3 ng/ml) and oPRL-treated (55.7 +/- 5.3 ng/ml) ewes. Neither serum insulin nor growth hormone responded (P > 0.05) to exogenous oPRL on either Day 0 or 28. No difference (P > 0.30) in percentage of ewe lambs cycling during treatment or breeding was detected between groups. Subsequent lambing percentages were similar (P > 0.30), with 36.4% of control and 25.0% of oPRL-treated ewes producing offspring. Administering 5 mg oPRL on alternate days for 28 d before breeding did not enhance growth and(or) reproductive performance in virgin ewe lambs.  相似文献   

4.
A series of experiments were conducted in ewes and whether (castrate male) lambs to evaluate the influence of prostaglandins on secretion of anabolic hormones and to determine if repeated injections of prostaglandin (PG) F2alpha would chronically influence the secretion of these hormones and perhaps growth rate as well. A single intravenous injection of PGA1 and PGB1 (100 microgram/kg) exerted no significant (P greater than .10) influence on plasma concentrations of prolactin (PRL), growth hormone (GH) or thyrotropin (TSH) in ewes. PGA1, but not PGB1, stimulated an increase in the plasma concentration of insulin. Infusion of PGF2alpha for 5.5 hr into ewes resulted in increased (P less than .05) plasma concentrations of both GH and ARL while TSH and insulin were not significantly influenced. Prostaglandin F2alpha, when injected subcutaneously into wether lambs (10 mg twice weekly) stimulated (P less than .05) plasma GH concentrations after the first injection, but not after 3 weeks of treatment. Changes in plasma PRL or TSH were not observed consistently in the lambs treated chronically with PGF2alpha or TRH. Prostaglandin F2alpha, in the present studies, and PGE1 in previously reported studies (1-3), has been demonstrated to be stimulatory to the secretion of PRL and GH. In contrast, PGA1 and PGB1, which lack an 11-hydroxyl group, failed to influence the secretion of either PRL or GH. It would, therefore, appear that the 11-hydroxyl group is a structural requirement for prostaglandins to influence the secretion of these two hormones in sheep. Treatment with thyrotropin releasing hormone (TRH), alone or in combination with PGF 2alpha, significantly (P less than .05) increased growth rate (average daily gains) while PGF2alpha did not, despite the fact that both compounds exerted similar effects on plasma GH.  相似文献   

5.
Spring-born crossbred ewe lambs were raised in a natural photoperiod and saline (N = 6) or naloxone (1 mg/kg) in saline (N = 6) was injected (i.m.) every 2 h for 6 h at 5, 10 and 15 weeks of age and for 8 h at 20, 25 and 30 weeks of age. Blood samples were taken every 12 min during treatment periods. Naloxone had no effect on time to first oestrus (controls 235 +/- 6 days, naloxone 242 +/- 7 days). Mean serum LH concentrations and LH pulse frequency were elevated by naloxone in ewe lambs at 20, 25, and 30 weeks of age (P less than 0.05). The only FSH response to naloxone was a depression of mean serum concentrations at 30 weeks of age (P less than 0.05). LH pulse amplitude was elevated at 5 weeks of age in all ewe lambs and declined thereafter to a nadir at 30 weeks of age in control, but not in naloxone-treated animals (P less than 0.05). LH pulse frequency was elevated at 10 weeks of age in control ewe lambs and in all animals at 30 weeks of age (P less than 0.05). FSH pulse frequency declined from 5 weeks of age in control ewe lambs (P less than 0.05), with very few pulses noted in 25- and 30-week-old animals. We conclude that (1) opioidergic suppression of LH, but not FSH, secretion developed at 20 weeks of age in the growing ewe lambs used in the present study, with no obvious change in suppression before the onset of first oestrus: (2) pulsatile FSH secretion occurred in the young ewe lamb but was lost as the lamb matured: (3) attainment of sexual maturity was preceded by an elevation in LH pulse frequency.  相似文献   

6.
The aim of this study was to determine the effects of either a 17-day exposure to vasectomised rams or a short-term exposure to entire rams on ewe lamb reproductive performance. Seven hundred and twenty-one Romney ewe lambs, 7–9 months of age, were randomly assigned to one of four treatment groups. Treatments included exposure to vasectomised rams for 17 days prior to breeding, exposure to entire rams for 4 or 2 days prior to breeding or not being exposed to either vasectomised or entire rams. Unteased ewe lambs and those exposed to entire rams for either 2 and 4 days were less (P < 0.05) likely to be mated in the first 17 days of breeding only and pregnant in the first 17 days of breeding compared to ewe lambs exposed to vasectomised rams for a full 17 days pre-breeding. Ewe lambs exposed to entire rams for 2 days were more (P < 0.05) likely to be mated in the first 8 days of breeding, mated in the first 17 days of breeding only and pregnant in the first 17 days of breeding compared to unteased ewe lambs. Therefore, a short-term exposure to entire rams can be used to induce breeding activity in ewe lambs, although it is not as effective as a full 17-day exposure to vasectomised rams.  相似文献   

7.
A study was conducted to determine whether an opioid tonus inhibitory of LH secretion is present in underfed prepubertal sheep. Ten Suffolk ewe lambs were subjected to food restriction during 60 days. During this period they were allowed to pasture only 2 hours per day while control ewe lambs were allowed for 10 hours. Body weight and plasma blood levels of glucose, urea and total proteins were measured weekly. At the end of this period, an intravenous injection of Naloxone (NAL, 1.5 mg/kg BW) was given to control and underfed animals followed 60 min later by an intravenous injection of LHRH to test the pituitary responsiveness. Underfed animals did not show an increase in plasma LH while control animals presented a rise from 0.28 +/- 0.08 to 2.02 +/- 0.6 ng/ml after the NAL stimulus (P less than 0.05). The response to LHRH was similar in both group of animals. Basal plasma levels of insulin were lower in underfed ewe lambs than in control animals (P less than 0.05). Underfed animals were placed on plain feeding with a schedule similar to control lambs for 30 days and the same experiment was repeated. During this occasion, NAL increased plasma LH concentration in both group of lambs. Levels of plasma insulin were not different in both groups. The lack of effect of NAL on LH secretion in food restricted ewe lambs suggests that the opioid modulation of LH secretion is absent by underfeeding in female prepubertal sheep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Two studies evaluated hormonal markers as indicators of the onset of puberty in Debouillet sheep selected for twinning. In Trial 1, 29 ewe lambs (50 +/- 0.5 kg, 159 to 187 d of age) were given 10 microg GnRH (i.v.) on September 15 and blood was collected at 30 min intervals after the injection for 2 h. Additional samples were taken twice weekly and progesterone (P4) was measured. The day that serum P4 was greater than 1 ng/mL for 2 consecutive sampling days was classified as the day of puberty. Average day of puberty was October 12 (average age at puberty was 199 d) and ewes with values less or greater than the average were classified as early or late, respectively. Average weight at GnRH challenge was 50 kg and ewes weighing less or more were classified as light or heavy, respectively. Early ewes weighed more (P = 0.01) and reached puberty sooner (P = 0.01) than late ewes. Heavy lambs reached puberty earlier, weighed more at GnRH challenge, and had more LH area under the curve (AUC, P < 0.05) than light ewes. In Trial 2, we gave 27 ewe lambs (54 +/- 0.9 kg, 173 to 189 d of age) a single i.v. injection of 10 microg GnRH and 10 microg GHRH on September 17. Average day of puberty was October 13, average weight was 54 kg, and average age at puberty was 208 d. Categories were designated as described for Trial 1. Early lambs reached puberty sooner (P = 0.01) and weighed more (P = 0.01) than late lambs, but the puberty groups had similar LH AUC (P = 0.64) and GH AUC (P = 0.75), whereas IGF-I was greater (P = 0.01) in early puberty ewes than in late puberty ewes. Heavy lambs reached puberty earlier (P = 0.06), weighed more (P = 0.01), and tended (P = 0.11) to have more GH AUC than light ewes. No difference was observed in LH AUC or IGF-I between weight groups (P > 0.15). Results suggest that serum LH after GnRH is not a reliable indicator of the onset of puberty in ewe lambs selected for twinning, but heavier ewes tended to produce more GH after a GHRH challenge and reach puberty earlier than lighter ewe lambs.  相似文献   

9.
We studied the relationships among growth, body composition and reproductive performance in ewe lambs with known phenotypic values for depth of eye muscle (EMD) and fat (FAT) and Australian Sheep Breeding Values for post-weaning live weight (PWT) and depth of eye muscle (PEMD) and fat (PFAT). To detect estrus, vasectomized rams were placed with 190 Merino ewe lambs when on average they were 157 days old. The vasectomized rams were replaced with entire rams when the ewe lambs were, on average, 226 days old. Lambs were weighed every week and blood was sampled on four occasions for assay of ghrelin, leptin and ß-hydroxybutyrate. Almost 90% of the lambs attained puberty during the experiment, at an average live weight of 41.4 kg and average age of 197 days. Ewe lambs with higher values for EMD (P < 0.001), FAT (P < 0.01), PWT (P < 0.001), PEMD (P < 0.05) and PFAT (P < 0.05) were more likely to achieve puberty by 251 days of age. Thirty-six percent of the lambs conceived and, at the estimated date of conception, the average live weight was 46.9 ± 0.6 kg and average age was 273 days. Fertility, fecundity and reproductive rate were positively related to PWT (P < 0.05) and thus live weight at the start of mating (P < 0.001). Reproductive performance was not correlated with blood concentrations of ghrelin, leptin or ß-hydroxybutyrate. Many ewe lambs attained puberty, as detected by vasectomized rams, but then failed to become pregnant after mating with entire rams. Nevertheless, we can conclude that in ewe lambs mated at 8 months of age, higher breeding values for growth, muscle and fat are positively correlated with reproductive performance, although the effects of breeding values and responses to live weight are highly variable.  相似文献   

10.
A series of experiments were conducted in ewes and wether (castrate male) lambs to evaluate the influence of prostaglandins on secretion of anabolic hormones and to determine if repeated injections of prostaglandin (PG) F2α would chronically influence the secretion of these hormones and perhaps growth rate as well.A single intravenous injection of PGA1 and PGB1 (100 μg/kg) exerted no significant (P > .10) influence on plasma concentrations of prolactin (PRL), growth hormone (GH) or thyrotropin (TSH) in ewes. PGA1, but not PGB1, stimulated an increase in the plasma concentration of insulin. Infusion of PGF2α for 5.5 hr into ewes resulted in increased (P < .05) plasma concentrations of both GH and PRL while TSH and insulin were not significantly influenced. Prostaglandin F2α, when injected subcutaneously into wether lambs (10 mg twice weekly) stimulated (P < .05) plasma GH concentrations after the first injection, but not after 3 weeks of treatment. Changes in plasma PRL or TSH were not observed consistently in the lambs treated chronically with PGF2α or TRH.Prostaglandin F2α, in the present studies, and PGE1 in previously reported studies (1–3), has been demonstrated to be stimulatory to the secretion of PRL and GH. In contrast, PGA1 and PGB1, which lack an 11-hydroxyl group, failed to influence the secretion of either PRL or GH. It would, therefore, appear that the 11-hydroxyl group is a structural requirement for prostaglandins to influence the secretion of these two hormones in sheep.Treatment with thyrotropin releasing hormone (TRH), alone or in combination with PGF2α, significantly (P < .05) increased growth rate (average daily gains) while PGF2α did not, despite the fact that both compounds exerted similar effects on plasma GH.  相似文献   

11.
Forty-four 6-mo-old, fine-wool ewe lambs were randomly allotted to one of three triiodothyronine (T(3)) treatment groups (14 or 15 ewe lambs/group). Treatments (0, 200, and 400 mug T(3)) were administered daily by subcutaneous injection during a 30-d treatment period in September. Following the treatments, ewe lambs were allowed to mate with Debouillet rams during a 34-d breeding season. Animal weights did not differ (P > 0.10) among treatment groups throughout the study. However, ewe lambs receiving 400 mug T(3)/d gained less (P < 0.05) during the treatment period than did those receiving 200 mug T(3)/d or controls. Grease fleece weights (6-mo clip) were similar (P > 0.10) among treatment groups. Serum growth hormone (GH) values in blood samples collected on Days 7 and 28 of the 30-d treatment were similar (P > 0.10) before treatments were administered and on Day 7 after treatments were administered. However, on Day 28 after treatments were administered, serum GH was lower (P < 0.01) in ewe lambs receiving 400 mug T(3)/d (1.5 ng/ml) than in those receiving 200 mug/d (2.1 ng/ml) or controls (2.2 ng/ml). Ovarian cyclicity was determined by monitoring serum progesterone. Forty percent of control ewe lambs were determined to have cycled during treatment compared with 20% of those receiving 200 mug T(3)/day and none of those receiving 400 mug T(3)/d (P < 0.10). Pregnancy rates were lower (P < 0.10) in ewe lambs receiving 400 mug T(3)/d (29%) compared with those receiving 200 mug T(3)/d (60%) or controls (66.7%). Day of conception, lambs born/ewe exposed, lambs born/ewe lambing, and lambs weaned/ewe lambing did not differ (P > 0.10) among treatments. Preweaning performance of offspring was not altered by maternal treatment with 200 or 400 mug T(3)/d (P > 0.10). These data indicate that 200 and 400 mug T(3)/d will not enhance GH production or improve reproductive performance of ewe lambs.  相似文献   

12.
The aim of this study was to determine the effects of restricted feeding before puberty on growth performance and mammary gland development in replacement ewe lambs. At weaning, 72 Dorset ewe lambs were assigned to one of the three diets: an ad libitum control diet with medium-quality forage (MQF; diet A-MQF); a restricted diet with the same forage as A, but less feed concentrate (diet R-MQF); or a high-quality forage (HQF) diet (diet F-HQF). The quantity of concentrate offered to the group R-MQF and F-HQF ewe lambs was adjusted to obtain 70% of the control ewe lambs' growth rate. The diets were offered for 75 days after weaning to cover the allometric phase of mammary gland development. During this period, average daily gain (ADG) was 223 and 229 g/day for groups R-MQF and F-HQF, respectively, compared to 305 g/day for group A-MQF (P < 0.0001). At the end of this period, 28 ewe lambs were slaughtered and their mammary gland was collected. Parenchymal fresh tissue weight tended to be higher for groups R-MQF and F-HQF compared to group A-MQF (P = 0.09). Stroma weight was greater (P < 0.05) for the group A-MQF ewe lambs than for those in the other treatments. Total DNA and total protein in parenchymal tissue tended to be greater for groups R-MQF and F-HQF (P = 0.09 and P = 0.07, respectively). Dry fat-free tissue was greater for groups R-MQF and F-HQF (P < 0.05). The remaining ewe lambs were fed the same haylage and barley diet until their first lambing. During this period, compensatory growth was observed. ADG was greater (P < 0.01) for groups R-MQF and F-HQF than for group A-MQF, and feed conversion was improved (P < 0.01) for groups R-MQF and F-HQF compared with the control, whereas the dry matter intake was similar for all groups. Live body weight, loin eye depth and backfat depth at breeding and around lambing were similar for all groups. The results of this study suggest that restricted feeding before puberty improves mammary gland development without compromising growth performance in ewe lambs.  相似文献   

13.
Finn x Dorset ewe lambs (n = 70) born in the spring (March 28 to April 6) from two successive lambing seasons were evaluated for age at first ovulation in the absence of mature rams. Ewe lambs were born in a controlled, short light (8L:16D) photoperiod or in ambient light (13L:11D). At about 10 to 11 wk of age, ewe lambs were allocated to a short (8L:16D) or long (16L:8D) light environment. Plasma progesterone (P(4)) concentrations were measured as an index of first ovulation. First exposure of ewes to sexually mature rams was in November. Most ewe lambs (77%) ovulated before ram exposure. More lambs (P < 0.025) born in ambient light and raised in short light reached puberty with typical cycles of plasma progesterone compared to other treatments. Long days tended to retard the onset of puberty. Although pregnancy rate did not differ across light treatments, more ewes became pregnant from the ambient-light born and short-light raised treatment. Photoperiod is an important factor affecting the onset of sexual maturation and genesis of normal luteal progesterone secretion in the ewe lamb.  相似文献   

14.
This experiment tested the hypothesis that thyroid hormones are essential for a milk production response to growth hormone (GH) and prolactin (PRL). Prior to breeding, female transgenic mice expressing the herpes simplex type-I thymidine kinase in the thyroid were treated with ganciclovir to ablate thyroid follicular cells. To provide for normal gestation, thyrocyte-ablated mice were supplied thyroxine (T4) in drinking water (0.2 microgram/ml) until 7 days before parturition. Litter size was adjusted to 9 pups, hormone administration began on Day 2 of lactation, and mice were sacrificed on Day 12. There were 5-6 mice in each of 7 treatments that included nonablated controls, thyrocyte-ablated controls, and thyrocyte-ablated mice treated with T4, GH, PRL, GH + T4, and PRL + T4. Thyroxine was administered in drinking water, and GH and PRL (20 microgram/d) were administered by subcutaneous injection. Compared with thyrocyte-ablated controls, litter weight gain was unaffected when dams were treated with GH, PRL, or T4 alone. However, when dams were treated with GH or PRL in combination with T4, litter weight gain increased 13% compared with thyrocyte-ablated controls and 18% compared with GH or PRL-treated mice. Concentration of T4 in serum of pups averaged 62 ng/ml and did not differ among treatments. Concentration of T4 in serum of dams averaged 76 ng/ml when T4-treated. Thyroxine 5'-deiodinase (5'D), the enzyme that converts T4 to triiodothyronine, was quantitated in liver, kidney, and mammary gland. Quantity of 5'D was lower in liver and kidney of thyrocyte-ablated dams without T4 than in respective tissues of mice treated with T4, and there was no effect of GH or PRL. However, in mammary gland, 5'D was increased by treatment with GH, PRL, or T4. Data show that thyroid hormones are necessary for a galactopoietic response to GH and PRL and demonstrate a unique organ-specific regulation of 5'D by galactopoietic hormones.  相似文献   

15.
This study tested a hypothesis that the enhancement of the prolactin (PRL) concentration within the central nervous system (CNS) disturbs pulsatile luteinizing hormone (LH) and growth hormone (GH) secretion in rams that are in the natural breeding season. A 3h long intracerebroventricular (icv.) infusion of ovine PRL (50 microg/100 microl/h) was made in six rams during the daily period characterized by low PRL secretion in this species (from 12:00 to 15:00 h); the other six animals received control infusions during the same time. Blood samples were collected from 9:00 to 18:00 h at 10 min intervals. A clear daily pattern of LH secretion was shown in control animals, with the lowest concentration at noon and an increasing basal level around the time of sunset (P < 0.001). No significant changes in LH concentration occurred in PRL-infused animals and the concentration noted after infusion of PRL was significantly (P < 0.05) lower than after the control infusion. The frequency of LH pulses tended to decrease in rams after PRL treatment. The changes in LH secretion clearly carried over to the secretion of testosterone in the rams of both groups. The GH concentrations changed throughout the experiment in both groups of rams, being higher after the infusions (P < 0.001). However, the mean GH concentration and GH pulse amplitude noted after PRL infusion were significantly lower (P < 0.001 and P < 0.05, respectively) from those recorded in the control. The continued fall in PRL secretion observed in rams following PRL infusion (P < 0.05 to P < 0.001) indicates a high degree of effectiveness of exogenous PRL at the level of the CNS. In conclusion, maintenance of an elevated PRL concentration within the CNS leads to disturbances in the neuroendocrine mechanisms responsible for pulsatile LH and GH secretion in sexually active rams.  相似文献   

16.
Fifteen pinealectomized and 15 unoperated ewes were exposed to constant light for 3 weeks before and 10 weeks after lambing. Fourteen pinealectomized and 15 unoperated ewes were allowed to lamb outdoors. Five ewe lambs born in constant light to the 2 groups of dams were pinealectomized at 10 weeks of age. Ewes and lambs were then returned to the field. Puberty (determined by weekly progesterone analysis) was significantly delayed (P less than 0.05) in the pinealectomized ewe lambs. Median pubertal age in pineal-intact ewe lambs was 37 weeks compared to 49 weeks in pinealectomized lambs. Constant light during the first 10 weeks of life had no effect upon puberty onset nor did the pineal status of the dam. Control lambs entered seasonal anoestrus at the time pinealectomized ewe lambs were entering puberty. Pinealectomized lambs entered anoestrus at the same time as control lambs were beginning their second breeding season. These results confirm a key role of pineal-mediated hormonal signals in the control of puberty in the sheep.  相似文献   

17.
H E Carlson 《Life sciences》1984,35(17):1747-1754
Nickel (Ni++) is a potent inhibitor of prolactin (PRL) secretion from isolated rat pituitary quarters in vitro, suppressing both basal PRL release and the stimulation of PRL secretion due to theophylline and dibutyryl cyclic AMP. Stimulation of growth hormone (GH) secretion by synthetic GHRH is also blunted by Ni++, although basal GH release and stimulated GH release due to theophylline or dibutyryl cyclic AMP are not suppressed. Ni++ antagonizes the stimulation of both PRL and GH secretion by barium (Ba++) ion, suggesting that the inhibitory effects of Ni++ on hormone release are due to an antagonism of calcium uptake or redistribution.  相似文献   

18.
A decline in circulating progesterone concentration plays an important role in the ethiopathogenesis of pseudopregnancy in the bitch. Because growth hormone (GH) and prolactin (PRL) are essential for normal mammogenesis and the secretion of these hormones is influenced by changes in the circulating progesterone concentration, the purpose of this study was to investigate the effects of mid-luteal phase ovariectomy on the 6-h pulsatile plasma profiles of GH and PRL and the basal plasma concentrations of GH, PRL, and insulin-like growth factor-I (IGF-I) in six beagle bitches. Ovariectomy was followed by only mild or covert signs of pseudopregnancy. The sharp decrease of the plasma progesterone concentration was accompanied by decreased basal plasma concentrations of GH and IGF-I and a rise in basal plasma PRL concentration. GH and PRL were secreted in a pulsatile fashion both prior to and after ovariectomy. The mean basal plasma GH concentration was significantly higher before ovariectomy than on days 1 and 7 after ovariectomy. The mean area under the curve above the zero level (AUC(0)) for GH was significantly higher before than at 7 days after ovariectomy. The mean area under the curve above basal level (AUC(b)) and the frequency of GH pulses at 7 days after ovariectomy were significantly higher than before and 1 day after ovariectomy. Both the mean basal plasma PRL concentration and the mean AUC(0) for PRL increased after ovariectomy. In conclusion, ovariectomy of bitches in the mid-luteal phase stops progesterone-induced GH release from the mammary gland, as evidenced by the lowering of basal plasma GH levels, the recurrence of GH pulsatility, and the lowering of circulating IGF-I levels. The sudden lowering of plasma progesterone concentration is probably a primary cause of a prolonged increase in PRL secretion. These observations underscore the importance of similar, albeit less abrupt, hormonal changes in the cyclical physiological alterations in the mammary gland and in the development of pseudopregnancy.  相似文献   

19.
This experiment concerned the changing patterns in secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and growth hormone (GH) under conditions of food restriction and subsequent catch-up growth. Weanling male rats were given either restricted (4 g food/day) or unrestricted access to food until 60 days of age. At this age, food-restricted rats weighed only 25% as much as rats fed ad libitum. Food restriction resulted in a dramatic decrease in the frequency of LH and GH pulses, and in the amplitude of GH pulses. It also slightly but significantly decreased mean blood levels of FSH (which was not secreted in a pulsatile manner in 60-day-old controls fed ad libitum). When restricted rats were given unrestricted access to food, frequency of LH and GH pulses and mean levels of FSH increased significantly and simultaneously within 2 days in half of the animals. Only an additional 8-10% of their body weight decrement was recovered at this time. After 10 days of food restoration, when restricted rats still weighed 50% less than controls, their secretory patterns of all three hormones were not significantly different from those of controls. Thus, recovery of gonadotropin and GH secretion was relatively rapid. Except for the quantitatively lesser impact of food restriction on FSH secretion, there was no evidence of any priorities in the secretion of the three hormones. Under conditions of rapid catch-up growth, the secretory patterns of LH, FSH, and GH appeared to develop simultaneously.  相似文献   

20.
The aim of the present study was to investigate whether the growth promoted transition to puberty in lambs involved changes in the effects of testicular hormones on somatostatin in hypothalamic neurons and GH secretion. The study was performed in infants (9-week-old) testis-intact (TEI) and orchidectomized (ORCHX) at the sixth week of age, and pubertal lambs (16-week-old) TEI and ORCHX at the 12th week of age (n = 20). In TEI lambs, the changes included a pubertal increase in immunoreactive somatostatin in the periventricular nucleus and median eminence with simultaneous neuropeptide depletion in the median eminence, and a decrease in the percentage of the hypophyseal area (PA) occupied by GH-immunoreactive cells (P < 0.05). The mean concentration of GH in the peripheral blood plasma was greater (P < 0.001) in early infancy (5 wk), because of the greater (P < 0.0001) pulse amplitude, and then uniformly low until puberty. The postnatal increase in the body weight (BW) was prominent (P < 0.01) in middle-late infancy (9-12 wk) because of the large daily live-weight gain. After orchidectomy somatostatin was abundant. This effect on nerve terminals in the median eminence was greater (P < 0.01) in infancy and lesser (P < 0.05) in puberty. Conversely, the PA occupied by GH cells was lower in the ORCHX pubertal lambs compared to TEI lambs (P < 0.05). The GH concentration and pulse characteristics were less (P < 0.05) in the infantile and pubertal ORCHX lambs compared to the TEI lambs. However, this effect was weak (P < 0.05) until middle infancy because of no influence on the GH basal concentration, and strong (P < 0.001) after late infancy. The BW did not differ (P > 0.05) between TEI and ORCHX lambs. Findings suggest activation of GH negative autofeedback loop in middle infancy. Testicular factors may play an inhibitory role in regulating somatostatin accumulation and a stimulatory role in GH secretion until puberty. The start of puberty is related to an attenuation in the stimulatory role of gonadal factors in regulating somatostatin depletion in nerve terminals associated with an intensification of the stimulatory role of gonadal factors in regulating GH secretion. From a somatic perspective of growth rate, these mechanisms do not seem to be important. Thus, testicular factors modulate mechanisms within the somatostatin-GH system to integrate somatotropic and gonadotropic functions at the time of growth-promoted sexual maturation in sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号