首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spiracular sense organs of the little skate, Raja erinacea, and the smooth dogfish, Mustelus canis, respond to movements of the hyomandibula-cranial joint. Afferent activity was recorded from the spiracular organ nerve in isolated preparations consisting of at least part of the cranium, the hyomandibula, and the spiracular organ and nerve. Afferents are excited by hyomandibular flexion at its joint with the cranium. Single unit recordings in the little skate revealed a single class of units that were slowly adapting, and had a regular firing pattern. Single unit firing rate increased up to about 70 spikes/s during hyomandibular flexion from a spontaneous rate at rest of 15-20 spikes/s, and could often be silenced by hyomandibular extension. The direction of excitation is consistent with the orientation of the hair cell ciliary bundles observed in morphological studies (Barry et al. 1988). Local deformations of the cupula are sufficient to excite or inhibit primary afferent firing, and volume changes in the spiracular organ as a whole are not necessary. The spiracular organs are relatively insensitive to electrical stimuli, vibration, or water movement. In conclusion, the spiracular organ functions as a sensitive joint receptor.  相似文献   

2.
The morphology of all larval instars of Fannia canicularis (Linnaeus) (Diptera: Fanniidae) is documented using a combination of light and scanning electron microscopy. The following structures are documented for all instars: antennal complex; maxillary palpus; facial mask; cephaloskeleton; ventral organ; anterior spiracle; Keilin's organ; posterior spiracle; fleshy processes, and anal pad. Structures reported for the first time for all instars include: two pairs of lateral prominences on the prothoracic segment; additional ventrolateral prominences on the second thoracic segment, and a papilla at the base of the posterior spiracle. Other structures reported for the first time are anterior spiracles in the first instar and a serrated tip on the mouthhook in the second instar. A trichoid sensillum on the posterior spiracular plate, representing a sensory organ otherwise unknown in the Calyptratae, is described in the second and third instars. Results are discussed and compared with existing knowledge on dipteran larval morphology.  相似文献   

3.
Light and electron microscopic observations were made on the lateral line organs of the free neuromasts of the goby Bathygobius fuscus and the canal neuromasts of the cardinal fish Apogon cyanosoma. As in other lateral line systems, each neuromast consists of hair cells, supporting cells and mantle supporting cells, the whole being covered by a cupula. In B. fuscus the free neuromasts are mounted on papillae and have hair cells with stereocilia up to 2.5 μm long and a single kinocilium at least 25 μm long. Each neuromast is covered by a vane-like cupula that can be divided into two regions. The central region over the sensory area contains columns of myelin-like figures. These figures are absent from the outer region covering the mantle. The canal neuromasts of A. cyanosoma are diamond-shaped with up to 1,500 hair cells. The cupula is unusual in having a channel that lies over the sensory region. The hair cells have up to 45 stereocilia, the tallest reaching 2.5 μm, and a kinocilium at least 5 μm long. Tip links are shown for the first time between rows of stereocilia of the hair cells of lateral line neuromasts. The presence of tip links has now been demonstrated for all acousticolateral hair cell systems.  相似文献   

4.
Summary Granulated epithelial cells at the vascular pole of the renal corpuscle, peripolar cells, have been found in the kidneys of five species of elasmobranchs, the little skate (Raja erinaced), the smooth dogfish shark (Mustelus canis), the Atlantic sharpnose shark (Rhizoprionodon terraenovae), the scalloped hammerhead shark (Sphryna lewini), and the cow-nosed ray (Rhinoptera bonasus). In a sixth elasmobranch, the spiny dogfish shark (Squalus acanthias), the peripolar cells could not be identified among numerous other granulated epithelial cells. The peripolar cells are located at the transition between the parietal epithelium of Bowman's capsule and the visceral epithelium (podocytes) of the glomerulus, thus forming a cuff-like arrangement surrounding the hilar vessels of the renal corpuscle. These cells may have granules and/or vacuoles. Electron microscopy shows that the granules are membrane-bounded, and contain either a homogeneous material or a paracrystalline structure with a repeating period of about 18 nm. The vacuoles are electron lucent or may contain remnants of a granule. These epithelial cells lie close to the granulated cells of the glomerular afferent arteriole. They correspond to the granular peripolar cells of the mammalian, avian and amphibian kidney. The present study is the first reported occurrence of peripolar cells in a marine organism or in either bony or cartilagenous fish.  相似文献   

5.
Summary Intracellular recordings were obtained from primary and secondary sensory hair cells in the anterior transverse crista segment of the squid (Alloteuthis subulata) statocyst during imposed displacements of the overlying cupula. The secondary sensory hair cells were depolarized by ventral movements of the cupula and hyperpolarized by dorsal cupula movements. The displacement/response curve was asymmetric around the zero position and sigmoidal in shape, similar to that already described for vertebrate hair cells. The cells are estimated to have a sensitivity of at least 0.5 mV per degree angle of cilia displacement. The responses showed pronounced adaptation and could be blocked by bath applied alcohols, such as heptanol or octanol, or by high concentrations of aminoglycosides.The primary sensory hair cells were depolarized by dorsal movements of the cupula, usually responding with a burst of action potentials. The displacement/response curve was also sigmoidal in shape and the firing pattern showed strong adaptation to maintained displacements of the cupula.The cupula itself appeared to be irregular in shape, extending much further into the statocyst cavity in its central part than at its edges. This is likely to result in differences in the responses of the underlying hair cells along the length of the crista ridge.  相似文献   

6.
Carbon and nitrogen stable isotope analyses have improved our understanding of food webs and movement patterns of aquatic organisms. These techniques have recently been applied to diet studies of elasmobranch fishes, but isotope turnover rates and isotope diet–tissue discrimination are still poorly understood for this group. We performed a diet switch experiment on captive sandbar sharks (Carcharhinus plumbeus) as a model shark species to determine tissue turnover rates for liver, whole blood, and white muscle. In a second experiment, we subjected captive coastal skates (Leucoraja spp.) to serial salinity reductions to measure possible impacts of tissue urea content on nitrogen stable isotope values. We extracted urea from spiny dogfish (Squalus acanthias) white muscle to test for effects on nitrogen stable isotopes. Isotope turnover was slow for shark tissues and similar to previously published estimates for stingrays and teleost fishes with low growth rates. Muscle isotope data would likely fail to capture seasonal migrations or diet switches in sharks, while liver and whole blood would more closely reflect shorter term movement or shifts in diet. Nitrogen stable isotope values of skate blood and skate and dogfish white muscle were not affected by tissue urea content, suggesting that available diet–tissue discrimination estimates for teleost fishes with similar physiologies would provide accurate estimates for elasmobranchs.  相似文献   

7.
Summary Serial sections of the vestibular ampullae of two species of fish and one species of frog were investigated by electron microscopy. The kinocilium is the only connection between the sensory cells and the auxiliary structure (cupula). The cupula possesses canals that traverse its entire height. Each canal contains a single kinocilium in its proximal part; distally, it is filled with material that stains with colloidal silver. The matrix of the cupula consists of filaments running perpendicular to the canals. These filaments do not stain with colloidal silver. The kinocilium is connected to the wall of the canal via structures that differ in the studied species of fish and frog. The filamentous links between the kinocilium and the longest stereovilli of the sensory hair bundle are similar in all the investigated species. The stereovilli are interconnected by basal and shaft links, and by horizontal and oblique tip connectors, similar to those described by other authors for macula organs and the organ of Corti, although differences in structural details, especially of the horizontal tip and the shaft connectors, are present. Some of these are species specific and some are related to the position of the sensory cell in the epithelium and/or specific to the organ (ampulla or macula organ). Some attachment sites of the links are associated with osmiophilic submembranous material. These differences in the structure, distribution and attachment sites of the links are possibly of functional importance.  相似文献   

8.
Isolated vessels from four elasmobranchs, yellow stingray (Urolophus jamaicensis), clearnose skate (Raja eglanteria), ghost shark (Hydrolagus novaezelandiae), and spiny dogfish (Squalus acanthias), were examined for the presence of spontaneous contractions (SC). SC were observed in otherwise unstimulated dorsal aortas (DA) from stingray and ghost shark, but not in skate DA. Unstimulated ventral aortas (VA) did not exhibit SC. After treatment of VA with a contractile agonist, SC appeared in stingray and skate but not ghost shark or dogfish. SC in stingray VA were subsequently inhibited by either epinephrine (10(-5) M) or indomethacin (10(-4) M). Agonist contraction also elicited strong SC in ductus Cuvier from stingray, but not from ghost shark or dogfish. SC in dogfish hepatic portal veins (HPV) produced a rhythmical oscillation in tension. The frequency of HPV SC was highest (approximately 1 min(-1)) in intact veins and lower (approximately 3 min(-1)) in vein segments, indicative of a dominant pacemaker in the intact vessel. SC in HPV were depressed during the first 30 min of hypoxia, but there was substantial recovery over an additional 30 min of hypoxia and complete recovery upon return to normoxia. Addition of 80 mM KCl completely inhibited HPV SC and lowered resting tone. These results show that SC are a common feature of elasmobranch vessels and there appears to be a correlation between swimming behavior and the propensity for SC. KCl inhibition of SC and tonus in HPV is highly unusual for vascular smooth muscle.  相似文献   

9.
Light and electron microscopical examination of the paratympanic organ of 8 avian species reveals a sensory epithelium with hair cells and supporting cells, covered by a gelatinous cupula with numerous non-crystalline deposits. The position of the organ is in agreement with previous suggestions of its function as an air pressure detector.  相似文献   

10.
Summary In this study we examine the fine structure of mechanosensory hairs in the antennule of crayfish. The sensory hair is a stiff shaft with feather-like filaments. The hair's base is a large expansion of membrane which allows the hair shaft to deflect. The sensory transducing elements are located far from the hair, but are coupled mechanically with the hair shaft by a fine extracellular chorda. The sensory element is a type of scolopidium which consists of a scolopale cell and three sensory cells with a 9 + 0 type ciliary process.This type of scolopidium is characteristic of the chordotonal organ that has no cuticular structure on the surface of the exoskeleton. In this crustacean hair receptor, the deflection of the cuticular hair is transmitted through the chorda to the scolopidium which is a tension-sensitive transducer. The present study reveals that the mechanosensory hair of decapod crustaceans is a chordotonal organ accompanied by a cuticular hair structure. We also discuss comparative aspects of cuticular and subcuticular chordotonal organs in arthropods.  相似文献   

11.
12.
The Drosophila respiratory system consists of two connected organs, the tracheae and the spiracles. Together they ensure the efficient delivery of air-borne oxygen to all tissues. The posterior spiracles consist internally of the spiracular chamber, an invaginated tube with filtering properties that connects the main tracheal branch to the environment, and externally of the stigmatophore, an extensible epidermal structure that covers the spiracular chamber. The primordia of both components are first specified in the plane of the epidermis and subsequently the spiracular chamber is internalized through the process of invagination accompanied by apical cell constriction. It has become clear that invagination processes do not always or only rely on apical constriction. We show here that in mutants for the src-like kinase Btk29A spiracle cells constrict apically but do not complete invagination, giving rise to shorter spiracular chambers. This defect can be rescued by using different GAL4 drivers to express Btk29A throughout the ectoderm, in cells of posterior segments only, or in the stigmatophore pointing to a non cell-autonomous role for Btk29A. Our analysis suggests that complete invagination of the spiracular chamber requires Btk29A-dependent planar cell rearrangements of adjacent non-invaginating cells of the stigmatophore. These results highlight the complex physical interactions that take place among organ components during morphogenesis, which contribute to their final form and function.  相似文献   

13.
Skates discharge an electrical current too weak to be used for predation or defense, and too infrequent and irregular to be used for electrolocation. Additionally, skates possess a specialized sensory system that can detect electrical stimuli at the same strength at which they discharge their organs. These two factors are suggestive of a communicative role for the electric organ in skates, a role that has been demonstrated in similarly weakly electric teleosts (e.g., mormyrids and gymnotiforms). There is evidence that the sexual and ontogenetic variations in the electric organ discharge (EOD) in these other weakly electric fishes are linked to morphological variations in electric organs and the electrogenerating cells of the organs, the electrocytes. Little work has been done to examine possible sexual and ontogenetic variations in skate EODs or variations in the electrocytes responsible for those discharges. Electric organs and electrocyte morphology of male and female, and mature and immature little skates, Leucoraja erinacea, are characterized here. Female electric organs were bigger than male electric organs. This is suggestive of a sexually dimorphic EOD waveform or amplitude, which might be used as a sex-specific identification signal during courtship. The shapes of electrocytes that make up the organ were found to be significantly different between mature and immature individuals and, in some cases, posterior membrane surface area of the electrocytes increased at the onset of maturity due to the formation of membrane surface invaginations and papillae. This is evidence that the EOD of skates may differ in its waveform or amplitude or frequency between mature and immature skates, and act as a signal for readiness to mate. This study supports a communicative role during courtship for the weak electric organs of little skates, but studies that characterize skate EOD dimorphisms are needed to corroborate this speculation before conclusions can be drawn about the role the electric organ plays in communication during courtship.  相似文献   

14.
A century has passed since the discovery of the paratympanic organ (PTO), a mechanoreceptive sense organ in the middle ear of birds and other tetrapods. This luminal organ contains a sensory epithelium with typical mechanosensory hair cells and may function as a barometer and altimeter. The organ is arguably the most neglected sense organ in living tetrapods. The PTO is believed to be homologous to a lateral line sense organ, the spiracular sense organ of nonteleostean fishes. Our review summarizes the current state of knowledge of the PTO and draws attention to the astounding lack of information about the unique and largely unexplored sensory modality of barometric perception.  相似文献   

15.
The distribution of pit organs (free neuromasts) has previously been documented for several species of pelagic sharks, but is relatively poorly known for rays and bottom-dwelling (demersal) sharks. In the present study, the complete distribution of pit organs was mapped in the demersal sharks Heterodontus portusjacksoni, Orectolobus maculatus, Hemiscyllium ocellatum, Chiloscyllium punctatum, and Asymbolus analis, and the rays Rhinobatos typus, Aptychotrema rostrata, Trygonorrhina sp. A, Raja sp. A, and Myliobatis australis. All of these species had pit organs scattered over the dorsolateral surface. The sharks also had "mandibular" pit organs (and "umbilical" pit organs in C. punctatum and A. analis) on the ventral surface, while pit organs were sparse or absent on the ventral surface of rays. All of the species examined here, except for M. australis, also had a "spiracular" group of pit organs adjacent to the eye and/or spiracle. Spiracular pit organs were also recorded for the sawshark Pristiophorus sp. A and the skate Pavoraja nitida, although the remainder of pit organs were not mapped in these species. The distribution and number of pit organs varied both within and among species. Pit organ distribution was asymmetrical in each individual examined, but no particular trend towards left or right "handedness" was observed in any species. Although rays have been thought to have fewer pit organs than sharks in general, this was not the case in the present study. All of the species examined here had few pit organs compared to the pelagic sharks previously documented, but it is not clear whether this is due to ecological or phylogenetic causes.  相似文献   

16.
This paper examines the middle ear of fossil living animals in terms of the homologies which have been drawn between its parts in different vertebrate groups. Seven homologies are considered: 1, the middle ear cavity/spiracular pouch; 2, the stapes/hyomandibula; 3, the stapedial/hyomandibular processes; 4 the tympanic membrane; 5, the otic notch; 6, the fenestra ovalis; 7, and the stapedial/hyomandibular foramen. The reasons leading to assessments of homology are reviewed. Homologies 1 and 2, based largely on embryological evidence, are fairly robust, though there are arguments about the details. Homologies 3, 4 and 5 stem from ideas about early tetrapod evolution, and were influenced by contingent factors including the order and time of discovery of early fossil taxa, and perceptions of their phylogeny which resulted from this. They were also influenced by ideas of the evolution of terrestriality among tetrapods. Most of the conceptions have been overturned in recent years by new fossil discoveries and new ways of looking at old data. Homology 6 has been little considered. One possible hypothesis, placed in a strictly archetypal theoretical framework has been ignored but deserves consideration on other grounds. Homology 7 depends on how tetrapods are characterised, not a question which has posed difficulties until recently, but which is likely to with the discovery of intermediate fossil forms.  相似文献   

17.
18.
The inner ear of the skate, Raja ocellata, was examined by scanning electron microscopy. The otolithic membranes have a gelatinous component and an endogenous class of otoconia. Cupulae are reticulate in form. The morphology and polarization of sensory cell hair bundles are described for the various regions of the labyrinth, and are compared with published observations on other species. In the otolithic maculae, the more centrally located receptor cells generally have longer sterecolia than the peripheral cells. The hair bundles of the lacinia are similar to those of the central portion of the sacculus and differed from those of the rest of the utricular macula. Hair bundles in the peripheral regions of all maculae and cristae are similar. The polarization pattern of the utriculus is similar to that of teleosts, while that of the lagena is less clearly dichotomized. The receptor cells of most of the sacculus are oriented in a bivertical direction, with cells in the anterior portion, and a few in the posterior region, being aligned longitudinally. The significance of morphology and polarization with respect to the functions of the otolithic organs is discussed. The relationship of cell processes of the ampullary receptors to the cupula is briefly considered.  相似文献   

19.
The adaptations of elasmobranch sensory systems can be studied by linking the morphological structure with the natural behavior and ecology of the organism. This paper presents the first step in a neuroecological approach to interpret the spatial arrangement of the electrosensory ampullary organs in elasmobranch fishes. A brief review of the structure and function of the ampullae of Lorenzini is provided for interpretation of the organ system morphology in relation to the detection of dipole and uniform electric fields. The spatial projections of canals from discrete ampullary clusters were determined for the barndoor skate, Raja laevis, based upon a published figure in Raschi (1986), and measured directly from the head of the white shark, Carcharodon carcharias. The dorsoventrally flattened body of the skate restricts the projections of long canals to the horizontal plane. There is a distinct difference between dorsal and ventral projection patterns in all groups. Notable within-cluster features include a relatively long canal subgroup in the dorsal superficial ophthalmic (SOd) and dorsal hyoid (HYOd) clusters that are oriented parallel (bidirectionally) to the longitudinal axis of the body. It is postulated that this subgroup of canals may be important for detection and orientation to weak uniform fields. Ventral canal projections in the skate are primarily lateral, with the exception of the hyoid (HYOv) that also projects medially. This wide dispersion may function for the detection of prey located below the body and pectoral fins of the skate, and may also be used for orientation behavior. The mandibular canals located near the margin of the lower jaw (of both study species) are ideally positioned for use during prey manipulation or capture, and possibly for interspecific courtship or biting. The head of the white shark, which lacks the hyoid clusters, is ovoid in cross section and thus ampullary canals can project into three-dimensional space. The SOd and superficial ophthalmic ventral (SOv) clusters show strong rostral, dorsal and lateral projection components, whereas the SOv also detects rostral fields under the snout. In the sagittal plane, the SOv and SOd have robust dorsal projections as well as ventral in the SOv. Most notable are canal projections in the white shark buccal (BUC) ampullary cluster, which has a radial turnstile configuration on the ventrolateral side of the snout. The turnstile design and tilt between orthogonal planes indicates the white shark BUC may function in detection of uniform fields, including magnetically induced electric fields that may be used in orientation behaviors. These data can be used in future neuroecology behavioral performance experiments to (1) test for possible specializations of cluster groups to different natural electric stimuli, (2) the possibility of specialized canal subgroups within a cluster, and (3) test several models of navigation that argue for the use of geomagnetically induced electric cues.  相似文献   

20.
The pineal organ of elasmobranchs is an elongated photoreceptive organ. In order to investigate the afferent and efferent connections of the pineal organ of two elasmobranchs, the skate (Raja montagui) and the dogfish (Scyliorhinus canicula), a fluorescent carbocyanine (DiI) was applied to the pineal organ of paraformaldehyde-fixed brains. This application strongly labeled the pineal tract, which formed extensive bilateral projections. In both species, the pinealofugal fibers coursed to the dorsomedial thalamus, the medial pretectal area, the posterior tubercle, and the medial mesencephalic tegmentum and branched profusely in these areas. Application of DiI to the pineal organ also labeled occasional perikarya in the dorsomedial thalamus, posterior commissural region, posterior tubercle, and mesencephalic tegmentum. A comparison of these results with those of immunocytochemical analyses of the dogfish brain with an anti-salmon gonadotropin-releasing hormone (sGnRH) antiserum revealed a close topographical relation between the pineal projections and the midbrain sGnRH-immunoreactive (ir) nucleus, the only structure in the dogfish brain that contained sGnRHir neurons. This and the widespread distribution of sGnRHir fibers in the brain suggest that the midbrain sGnRHir nucleus is a part of the secondary pineal pathways and may be involved in light-mediated pineal regulation of brain function. Although GnRH distribution has not been studied in the skate, a midbrain GnRHir nucleus has been identified in three other elasmobranchs, including a skate relative. The probable existence of direct pineal projections to the GnRHir midbrain nucleus in elasmobranchs and other anamniotes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号