首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA recognition by the human polyadenylation factor CstF.   总被引:21,自引:8,他引:13       下载免费PDF全文
Polyadenylation of mammalian mRNA precursors requires at least two signal sequences in the RNA: the nearly invariant AAUAAA, situated 5' to the site of polyadenylation, and a much more variable GU- or U-rich downstream element. At least some downstream sequences are recognized by the heterotrimeric polyadenylation factor CstF, although how, and indeed if, all variations of this diffuse element are bound by a single factor is unknown. Here we show that the RNP-type RNA binding domain of the 64-kDa subunit of CstF (CstF-64) (64K RBD) is sufficient to define a functional downstream element. Selection-amplification (SELEX) experiments employing a glutathione S-transferase (GST)-64K RBD fusion protein selected GU-rich sequences that defined consensus recognition motifs closely matching those present in natural poly(A) sites. Selected sequences were bound specifically, and with surprisingly high affinities, by intact CstF and were functional in reconstituted, CstF-dependent cleavage assays. Our results also indicate that GU- and U-rich sequences are variants of a single CstF recognition motif. For comparison, SELEX was performed with a GST fusion containing the RBD from the apparent yeast homolog of CstF-64, RNA15. Strikingly, although the two RBDs are almost 50% identical and yeast poly(A) signals are at least as degenerate as the mammalian downstream element, a nearly invariant 12-base U-rich sequence distinct from the CstF-64 consensus was identified. We discuss these results in terms of the function and evolution of mRNA 3'-end signals.  相似文献   

2.
Yth1p is the yeast homologue of the 30 kDa subunit of mammalian cleavage and polyadenylation specificity factor (CPSF). The protein is part of the cleavage and polyadenylation factor CPF, which includes cleavage factor II (CF II) and polyadenylation factor I (PF I), and is required for both steps in pre-mRNA 3'-end processing. Yth1p is an RNA-binding protein that was previously shown to be essential for polyadenylation. Here, we demonstrate that Yth1p is also required for the cleavage reaction and that two protein domains have distinct roles in 3'-end processing. The C-terminal part is required in polyadenylation to tether Fip1p and poly(A) polymerase to the rest of CPF. A single point mutation in the highly conserved second zinc finger impairs both cleavage and polyadenylation, and affects the ability of Yth1p to interact with the pre-mRNA and other CPF subunits. Finally, we find that Yth1p binds to CYC1 pre-mRNA in the vicinity of the cleavage site. Our results indicate that Yth1p is important for the integrity of CPF and participates in the recognition of the cleavage site.  相似文献   

3.
4.
5.
6.
7.
Primary, secondary and higher-order structures of downstream elements of mammalian pre-mRNA polyadenylation signals [poly(A) signals] are re viewed. We have carried out a detailed analysis on our database of 244 human pre-mRNA poly(A) signals in order to characterize elements in their downstream regions. We suggest that the downstream region of the mammalian pre-mRNA poly(A) signal consists of various simple elements located at different distances from each other. Thus, the downstream region is not described by any precise consensus. Searching our database, we found that ~80% of pre-mRNAs with the AAUAAA or AUUAAA core upstream elements contain simple downstream elements, consisting of U-rich and/or 2GU/U tracts, the former occurring ~2-fold more often than the latter. Approximately one-third of the pre-mRNAs analyzed here contain sequences that may form G-quadruplexes. A substantial number of these sequences are located immediately downstream of the poly(A) signal. A possible role of G-rich sequences in the polyadenylation process is discussed. A model of the secondary structure of the SV40 late pre-mRNA poly(A) signal downstream region is presented.  相似文献   

8.
Cleavage site determinants in the mammalian polyadenylation signal.   总被引:22,自引:5,他引:17       下载免费PDF全文
Using a series of position and nucleotide variants of the SV40 late polyadenylation signal we have demonstrated that three sequence elements determine the precise site of 3-end cleavage in mammalian pre-mRNAs: an upstream AAUAAA element, a down-stream U-rich element consisting of five nucleotides, at least four of which are uridine, and a nucleotide preference at the site of cleavage in the order A > U > C >> G. Cleavage occurs no closer than 11 bases, but no further than 23 bases from the AAUAAA element. The downstream U-rich element is usually located 10-30 bases from the cleavage site. The relative position of the AAUAAA and the U-rich elements define the approximate region within a 13 base domain in which cleavage will occur. The exact position of cleavage is then determined by the local nucleotide sequence in the order of preference noted above. This model accounts for nearly three quarters of polyadenylation signals surveyed and is consistent with previous experimental observations.  相似文献   

9.
10.
Hu J  Lutz CS  Wilusz J  Tian B 《RNA (New York, N.Y.)》2005,11(10):1485-1493
Polyadenylation is an essential step for the maturation of almost all cellular mRNAs in eukaryotes. In human cells, most poly(A) sites are flanked by the upstream AAUAAA hexamer or a close variant, and downstream U/GU-rich elements. In yeast and plants, additional cis elements have been found to be located upstream of the poly(A) site, including UGUA, UAUA, and U-rich elements. In this study, we have developed a computer program named PROBE (Polyadenylation-Related Oligonucleotide Bidimensional Enrichment) to identify cis elements that may play regulatory roles in mRNA polyadenylation. By comparing human genomic sequences surrounding frequently used poly(A) sites with those surrounding less frequently used ones, we found that cis elements occurring in yeast and plants also exist in human poly(A) regions, including the upstream U-rich elements, and UAUA and UGUA elements. In addition, several novel elements were found to be associated with human poly(A) sites, including several G-rich elements. Thus, we suggest that many cis elements are evolutionarily conserved among eukaryotes, and human poly(A) sites have an additional set of cis elements that may be involved in the regulation of mRNA polyadenylation.  相似文献   

11.
We have investigated how the upstream sequence element (USE) of the lamin B2 poly(A) signal mediates efficient 3'-end formation. In vitro analysis demonstrates that this USE increases both the efficiency of 3'-end cleavage and the processivity of poly(A) addition. Cross-linking using selectively labeled synthetic RNAs confirms that cleavage stimulation factor interacts with the sequences downstream of the cleavage site, while electrophoresis mobility shift assays demonstrate that the USE directly stabilizes the binding of the cleavage and polyadenylation specificity factor to the poly(A) signal. Thus in common with other poly(A) signals, the lamin B2 USE directly enhances the binding of basal poly(A) factors. In addition, a novel 55-kDa protein binds to the USE and the core poly(A) signal and appears to inhibit cleavage. The binding activity of this factor appears to change during the cell cycle, being greatest in S phase, when the lamin B2 gene is transcribed.  相似文献   

12.
A recent genome-wide bioinformatic analysis indicated that 54% of human genes undergo alternative polyadenylation. Although it is clear that differential selection of poly(A) sites can alter gene expression, resulting in significant biological consequences, the mechanisms that regulate polyadenylation are poorly understood. Here we report that the neuron-specific members of a family of RNA-binding proteins, Hu proteins, known to regulate mRNA stability and translation in the cytoplasm, play an important role in polyadenylation regulation. Hu proteins are homologs of the Drosophila embryonic lethal abnormal visual protein and contain three RNA recognition motifs. Using an in vitro polyadenylation assay with HeLa cell nuclear extract and recombinant Hu proteins, we have shown that Hu proteins selectively block both cleavage and poly(A) addition at sites containing U-rich sequences. Hu proteins have no effect on poly(A) sites that do not contain U-rich sequences or sites in which the U-rich sequences are mutated. All three RNA recognition motifs of Hu proteins are required for this activity. Overexpression of HuR in HeLa cells also blocks polyadenylation at a poly(A) signal that contains U-rich sequences. Hu proteins block the interaction between the polyadenylation cleavage stimulation factor 64-kDa subunit and RNA most likely through direct interaction with poly(A) cleavage stimulation factor 64-kDa subunit and cleavage and polyadenylation specificity factor 160-kDa subunit. These studies identify a novel group of mammalian polyadenylation regulators. Furthermore, they define a previously unknown nuclear function of Hu proteins.  相似文献   

13.
14.
Recent in vivo studies have identified specific sequences between 56 and 93 nucleotides upstream of a polyadenylation [poly(A)] consensus sequence, AAUAAA, in human immunodeficiency virus type 1 (HIV-1) that affect the efficiency of 3'-end processing at this site (A. Valsamakis, S. Zeichner, S. Carswell, and J. C. Alwine, Proc. Natl. Acad. Sci. USA 88:2108-2112, 1991). We have used HeLa cell nuclear extracts and precursor RNAs bearing the HIV-1 poly(A) signal to study the role of upstream sequences in vitro. Precursor RNAs containing the HIV-1 AAUAAA and necessary upstream (U3 region) and downstream (U5 region) sequences directed accurate cleavage and polyadenylation in vitro. The in vitro requirement for upstream sequences was demonstrated by using deletion and linker substitution mutations. The data showed that sequences between 56 and 93 nucleotides upstream of AAUAAA, which were required for efficient polyadenylation in vivo, were also required for efficient cleavage and polyadenylation in vitro. This is the first demonstration of the function of upstream sequences in vitro. Previous in vivo studies suggested that efficient polyadenylation at the HIV-1 poly(A) signal requires a spacing of at least 250 nucleotides between the 5' cap site and the AAUAAA. Our in vitro analyses indicated that a precursor containing the defined upstream and downstream sequences was efficiently cleaved at the polyadenylation site when the distance between the 5' cap and the AAUAAA was reduced to at least 140 nucleotides, which is less than the distance predicted from in vivo studies. This cleavage was dependent on the presence of the upstream element.  相似文献   

15.
The CstF polyadenylation factor is a multisubunit complex required for efficient cleavage and polyadenylation of pre-mRNAs. Using an RNase H-mediated mapping technique, we show that the 64-kDa subunit of CstF can be photo cross-linked to pre-mRNAs at U-rich regions located downstream of the cleavage site of the simian virus 40 late and adenovirus L3 pre-mRNAs. This positional specificity of cross-linking is a consequence of CstF interaction with the polyadenylation complex, since the 64-kDa protein by itself is cross-linked at multiple positions on a pre-mRNA template. During polyadenylation, four consecutive U residues can substitute for the native downstream U-rich sequence on the simian virus 40 pre-mRNA, mediating efficient 64-kDa protein cross-linking at the downstream position. Furthermore, the position of the U stretch not only enables the 64-kDa polypeptide to be cross-linked to the pre-mRNA but also influences the site of cleavage. A search of the GenBank database revealed that a substantial portion of mammalian polyadenylation sites carried four or more consecutive U residues positioned so that they should function as sites for interaction with the 64-kDa protein downstream of the cleavage site. Our results indicate that the polyadenylation machinery physically spans the cleavage site, directing cleavage factors to a position located between the upstream AAUAAA motif, where the cleavage and polyadenylation specificity factor is thought to interact, and the downstream U-rich binding site for the 64-kDa subunit of CstF.  相似文献   

16.
17.
Production of the two mRNAs encoding distinct forms of 2'-5'-oligoadenylate synthetase depends on processing that involves the recognition of alternative poly(A) sites and an internal 5'-splice site located within the first 3'-terminal exon. The resulting 1.6- and 1.8-kb mRNAs are expressed in fibroblast cell lines, whereas lymphoblastoid B cells, such as Daudi, produce only the 1.8-kb mRNA. In the present study, we have shown that the 3'-end processing at the last 3'-terminal exon occurs independently of the core poly(A) site sequence or the presence of regulatory elements. In contrast, in Daudi cells, the recognition of the poly(A) site at the first 3'-terminal exon is impaired because of an unfavorable sequence context. The 3'-end processing at this particular location requires a strong stabilization of the cleavage/polyadenylation factors, which can be achieved by the insertion of a 25-nucleotide long U-rich motif identified upstream of the last poly(A) site. Consequently, we speculate that in cells expressing the 1.6-kb mRNA, such as fibroblasts, direct or indirect participation of a specific mechanism or cell type-specific factors are required for an efficient polyadenylation at the first 3'-terminal exon.  相似文献   

18.
Z F Chou  F Chen    J Wilusz 《Nucleic acids research》1994,22(13):2525-2531
We have defined the positional and sequence requirements of U-rich downstream elements using a simian virus 40 late polyadenylation signal containing a substituted downstream region. A UUUUU element will significantly increase the efficiency of 3' end processing when placed between 6 and 25 bases downstream from the cleavage site. Positions in this interval closer than 15 bases from the cleavage site, however, were noticeably less efficient. Placement of the UUUUU element between +20 and +25 caused a partial shift in cleavage site usage to a CA motif at +4. Mutational analysis indicated that the sequence requirements at individual positions of the UUUUU element were somewhat flexible. Changing more than one base of the UUUUU sequence, however, severely diminished the ability of the element to mediate efficient 3' end processing. Finally, although hnRNP C proteins specifically interact with U-rich sequences, this protein--RNA interaction is not required for efficient in vitro polyadenylation.  相似文献   

19.
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.  相似文献   

20.
To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号