首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic alpha-helices play a major role in membrane dependent processes and are manifested in the primary structure of a protein by the periodic appearance of hydrophobic residues. Based on these periodic sequences, the hydrophobic moment was introduced, , which essentially treats the hydrophobicity of amino acid residues as a two-dimensional vector sum and provides a measure of amphiphilicity within regular repeat structures. To identify putative amphiphilic alpha-helix forming sequences, hydrophobic moment analysis assumes an amino acid residue periodicity of 100 and scans protein primary structures to find the 11-residue window with maximal . Taken with the window's mean hydrophobicity, , hydrophobic moment plot analysis uses the coordinate pair, [, ] to classify alpha-helices as either surface active, globular or transmembrane. More recently, this latter analysis has been extended to recognize candidate oblique orientated alpha-helices. Here, the hydrophobic moment is reviewed and data to query the logic of using a fixed window length and a fixed residue angular periodicity in hydrophobic moment analysis are provided. In addition, problems associated with the use of such analysis to predict alpha-helix structure/function relationships are considered.  相似文献   

2.
Here, it is shown that amphiphilicity profiling based on the mean hydrophobic moment provides a simple visual guide for the identification of oblique orientated alpha-helices. The methodology has an efficiency of circa 70% and predicts that approximately 40% of transmembrane alpha-helices may possess these structures.  相似文献   

3.
4.
The contribution of alpha-helices to the surface activities of proteins   总被引:1,自引:0,他引:1  
K E Krebs  M C Phillips 《FEBS letters》1984,175(2):263-266
  相似文献   

5.
Integral membrane proteins are the primary targets of novel drugs but are largely without solved structures. As a consequence, hydrophobic moment plot methodology is often used to identify putative transmembrane α-helices of integral membrane proteins, based on their local maximum mean hydrophobic moment (<μH>) and the corresponding mean hydrophobicity (<H>). To calculate these properties, the methodology identifies an optimal eleven residue window (L = 11), assuming an amino acid angular frequency, θ, fixed at 100°.  相似文献   

6.
A peptide derived from apomyoglobin by cyanogen bromide cleavage was found to be an active emulsifier. This molecule, peptide 1-55, has two potential amphipathic alpha-helices and a hydrophilic C-terminal domain. The importance of each of these domains to the emulsifying properties of this molecule was investigated by testing the products of gene constructs based on the sequence of peptide 1-55, but lacking one of the three domains. The emulsifying activity of the peptides lacking either of the alpha-helices was correlated with the hydrophobic moments of their respective helices. The hydrophobic moment is a measure of the amphipathicity of alpha-helices; a hydrophobic moment analysis of other emulsifying peptides supports the hypothesis that a high hydrophobic moment contributes to good emulsifying properties in a molecule which contains alpha-helices.  相似文献   

7.
Multiple linear regression was used to quantify the dependence of the antimicrobial activity of 13 peptides upon three calculated or experimentally determined parameters: mean hydrophobicity, mean hydrophobic moment, and α-helix content. Mean hydrophobic moment is a measure of the amphiphilicity of peptides in an α-helical conformation. Antimicrobial activity was quantified as the reciprocal of the measured minimal inhibitory concentration (MIC) against Escherichia coli. One of the peptides was magainin 2, and the remainder were novel peptides designed for this study. The multiple linear regression results revealed that the amphiphilicity of the peptides was the most important factor governing anti-microbial activity compared to mean hydrophobicity orα-helix content. A better regression cf the data was obtained using In(1/MIC + constant) as the dependent variable than with either 1/MIC or In(1/MIC). These results should be useful in designing peptides with higher antimicrobial activity. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Oblique orientated alpha-helices are highly specialised protein structural elements that penetrate membranes at a shallow angle and are used to promote membrane destabilisation by a number of protein classes. Here, the use of extended hydrophobic moment methodology shows that the amphibian extrudates, aurein 1.2 and citropin 1.1, may use oblique orientated alpha-helices in their antimicrobial action and that such use may be shared by other antimicrobial peptides. This appears to be the first systematic analysis of these peptides for the possession of oblique orientated alpha-helical structure.  相似文献   

9.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   

10.
Helix formation in folding proteins is stabilized by binding of recurrent hydrophobic side chains in one longitudinal quadrant against the locally most hydrophobic region of the protein. To test this hypothesis, we fitted sequences of 247 alpha-helices of 55 proteins to the circular (infinite) template (symbol; see text) to maximize the strip-of-helix hydrophobicity index (the mean hydrophobicity of residues in (symbol; see text) positions). These template-predicted configurations closely matched crystallographic structures in 87% of four- or five-turn helices compared. We determined the longitudinal quadrant distributions of amino acids in the template-fitted, sheet projections of alpha-helices with respect to the best longitudinal, hydrophobic strip on each helix and to the N and C termini, interiors, and entire helices. Amino acids Leu, Ile, Val, and Phe were concentrated in one longitudinal quadrant (p less than 0.001). Lys, Arg, Asp, and Glu were not in the quadrant of Leu, Ile, Val, and Phe (p less than 0.001). Significant quadrant distributions for other amino acids and for termini of the helices were also found.  相似文献   

11.
Twelve mutations were constructed to improve the thermostability of glucoamylase from Aspergillus awamori based on the results of molecular dynamics simulations. The thermal unfolding of the catalytic domain followed a putative hierarchical behavior. In addition, the unfolding of the 13 alpha-helices obeyed the random ordered mechanism, in which the alpha-helices 8, 1 and 11 unfolded more rapidly than the others. The catalytic center was well protected by the (alpha/alpha)(6)-barrel at simulation temperatures up to 600 K, whereas the catalytic base, E400, migrated from its original interior pocket to the surface of the catalytic domain by surmounting the hydrophobic barrier provided by alpha-helices 12 and 13 at 800 K. The disulfide bonds engineered to 'lock' the alpha-helix 11 on the surface of the catalytic domain dramatically increased the thermostability. Substituting G396 and G407 with Ala residues slightly increased the thermostability, whereas their specific activity and catalytic efficiency were reduced. This indicates that the introduced residues with higher hydrophobicity were favorable in the loop between alpha-helices 12 and 13, whereas they partially destroyed the hydrogen bond and salt linkage network in the catalytic center. Alpha-helices 12 and 13 can be stabilized by introducing residues with higher hydrophobicity, except for the H391M mutation.  相似文献   

12.
A hallmark of soluble globular protein tertiary structure is a hydrophobic core and a protein exterior populated predominantly by hydrophilic residues. Recent hydrophobic moment profiling of the spatial distribution of 30 globular proteins of diverse size and structure had revealed features of this distribution that were comparable. Analogous profiling of the hydrophobicity distribution of the alpha-helical buried bundles of several transmembrane proteins, as the lipid/protein interface is approached from within the bilayer, reveals spatial hydrophobicity profiles that contrast with those obtained for the soluble proteins. The calculations, which enable relative changes of hydrophobicity to be simply identified over the entire spatial extent of the multimer within the lipid bilayer, show the accumulated zero-order moments of the bundles to be mainly inverted with respect to that found for the soluble proteins. This indicates a statistical increase in the average residue hydrophobic content as the lipid bilayer is approached. This result differs from that of a relatively recent calculation and qualitatively agrees with earlier calculations involving lipid exposed and buried residues of the alpha-helices of transmembrane proteins. Spatial profiling, over the entire spatial extent of the multimer with scaled values of residue hydrophobicity, provides information that is not available from calculations using lipid exposure alone.  相似文献   

13.
Fallaxin is a 25-mer antibacterial peptide amide, which was recently isolated from the West Indian mountain chicken frog Leptodactylus fallax. Fallaxin has been shown to inhibit the growth of several Gram-negative bacteria including Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Here, we report a structure-activity study of fallaxin based on 65 analogs, including a complete alanine scan and a full set of N- and C-terminal truncated analogs. The fallaxin analogs were tested for hemolytic activity and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate resistant S. aureus, (VISA), methicillin-susceptible S. aureus (MSSA), E. coli, K. pneumoniae, and P. aeruginosa. We identified several analogs, which showed improved antibacterial activity compared to fallaxin. Our best candidate was FA12, which displayed MIC values of 3.12, 25, 25, and 50 muM against E. coli, K. pneumoniae, MSSA, and VISA, respectively. Furthermore, we correlated the antibacterial activity with various structural parameters such as charge, hydrophobicity H, mean hydrophobic moment mu(H), and alpha-helicity. We were able to group the active and inactive analogs according to mean hydrophobicity H and mean hydrophobic moment mu(H). Far-UV CD-spectroscopy experiments on fallaxin and several analogs in buffer, in TFE, and in membrane mimetic environments (small unilamellar vesicles) indicated that a coiled-coil conformation could be an important structural trait for antibacterial activity. This study provides data that support fallaxin analogs as promising lead structures in the development of new antibacterial agents.  相似文献   

14.
The eukaryotic histone dimers, H3–H4 and H2A–H2B, are formed in the cytosol prior to being transported into the nucleus and assembled into the nucleosome. Residue side-chain distances from the interior of the histone dimers are obtained with an ellipsoidal spatial metric and structural information provided by X-ray analyses at atomic resolution of the nucleosome core particles. While the spatial hydrophobic moment profiles of the dimers are comparable with profiles obtained previously that characterize the hydrophobic core of single-chain, single-domain globular soluble proteins, correlation coefficients between the side-chain hydrophobicities and distances from the interior of the H3–H4 dimer and H2A–H2B dimer differ significantly. This difference is traced to the H3 histone fold, which segregates fewer hydrophobic residues within the protein interior than the three other folds. Examination of the correlation coefficient between residue hydrophobicity and side-chain distance from the dimer interior over local regions of the fold sequence shows that the region of reduced correlation is associated mainly with the residues at the carboxyl end of the H3 histone fold, the helical region of the fold involved in the H3–H3 binding of the (H3–H4)2 tetramer of the nucleosome. Hydrophobic interactions apparently contribute to the binding of this fourfold helical bundle and this evolutionary requirement may trade off against the requirement for H3–H4 dimer stability. The present results provide a different view than previously proposed, albeit of similar origin, to account for the reduced stability of the H3–H4 dimer compared with the H2A–H2B dimer.Reviewing Editor: Dr. Martin Kreitman  相似文献   

15.
Two major types of helical structures have been identified in lipid-associating proteins, being either amphipathic or transmembrane domains. A conformational analysis was carried out to characterize some of the properties of these helices. These calculations were performed both on isolated helices and in a lipid environment. According to the results of this analysis, the orientation of the line joining the hydrophobic and hydrophilic centers of the helix seems to determine the orientation of the helix at the lipid/water interface. The calculation of this parameter should be useful to discriminate between an amphipathic helix, parallel to the interface and a transmembrane helix orientated perpendicularly. The membrane-spanning helices are completely immersed in the phospholipid bilayer and their length corresponds to about the thickness of the hydrophobic core of the DPPC bilayer. The energy of interaction, expressed per phospholipid is significantly higher for the transmembrane compared to the amphipathic helices. For the membrane-spanning helices the mean energy of interaction is higher than the interaction energy between two phospholipids, while it is lower for most amphipathic helices. This might account for the stability of these protein-anchoring domains. This computer modeling approach should usefully complement the statistical analysis carried out on these helices, based on their hydrophobicity and hydrophobic moment. It represents a more refined analysis of the domains identified by the prediction techniques and stress the functional character of lipid-associating domains in membrane proteins as well as in soluble plasma lipoproteins.  相似文献   

16.
Reliability of the hydropathy method to predict the formation of membrane-spanning alpha-helices by integral membrane proteins and peptides whose structure is known from X-ray crystallography is analysed. It is shown that Kyte-Doolittle hydropathy plots do not predict accurately 22 transmembrane alpha-helices in the reaction centres (RC) of the photosynthetic bacteria Rhodopseudomonas viridis and Rhodobacter sphaeroides (R-26). The accuracy of prediction for these proteins was improved using an optimised Kyte-Doolittle hydrophobicity scale. However, this hydrophobicity scale did not improve the predictions for the alphabeta-peptides of the B800-850 (LH2) complexes of the photosynthetic bacteria Rhodopseudomonas acidophila and Rhodospirillum molischianum, which were excluded from the optimisation procedure. The best and worst predictions of membrane-spanning alpha-helices for the RC proteins and LH2 peptides, respectively, were obtained with a propensity scale (PRC) calculated from the amino acid sequences and X-ray data for the RC proteins. A propensity scale (PLH) obtained using the amino acid sequences and X-ray data for the alphabeta-peptides of the LH2 complexes did not give an acceptable prediction of the transmembrane segments in the LH2 peptides; moreover, it markedly contradicted the PRC scale. Amino acids have been concluded to have no significant preference to localisation in transmembrane segments. Therefore, the predictive ability of the hydropathy methodology appears to be limited: the number of transmembrane segments can be correctly calculated for the best case only, and the lengths and positions of membrane-spanning alpha-helices in a protein amino acid sequence can not be predicted exactly.  相似文献   

17.
Antimicrobial peptides (AMPs) kill microbial cells through insertion and damage/permeabilization of the cytoplasmic cell membranes and has applications in food safety and antibiotic replacement. Soy protein is an attractive, abundant natural source for commercial production of AMPs. In this research, explicit solvent molecular dynamics (MD) simulation was employed to investigate the effects of (i) number of total and net charges, (ii) hydrophobicity (iii) hydrophobic moment and (iv) helicity of peptides from soy protein on their ability to bind to lipid bilayer and their transmembrane aggregates to form pores. Interaction of possible AMP segments from soy protein with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPC/POPG) bilayers, a mimic of bacterial cell membrane, was investigated. Pore formation was insensitive to helicity and occurred for hydrophobicity threshold in the range of −0.3–0 kcal/mol, hydrophobic moment threshold of 0.3 kcal/mol, net charge threshold of 2. Though low hydrophobicity and high number of charges help in the formation of water channel for transmembrane aggregates, insertion of peptides with these properties requires overcome of energy barrier, as shown by potential of mean force calculations, thereby resulting in low antimicrobial activity. Experimental evaluation of antimicrobial activity of these peptides against Gram positive L. monocytogenes and Gram negative E. coli as obtained by spot-on-lawn assay was consistent with simulation results. These results should help in the development of guidelines for selection of peptides with antimicrobial activity based on their physicochemical properties.  相似文献   

18.
Understanding the influence of structural parameters is crucial to enhance the thermal stability of proteins. In this work, the stability (deltaG) of residues in different secondary structures of Ribonuclease H (RNase H) has been analyzed with 48 amino acid properties. The properties reflecting hydrophobicity show a good correlation with stability. Further, the linear distribution of surrounding hydrophobicity in alpha-helices, obtained from the three dimensional structure of thermophilic RNase H, agrees well with experimental deltaG values. Moreover, the stability parameters correlate better in alpha-helices than those did in beta-strand segments. Multiple regression analysis, incorporating combinations of three properties from among all possible combinations of the 48 properties, increased the correlation coefficient to 0.77.  相似文献   

19.
Hydrophobic interaction chromatography (HIC) is an important technique for the purification of proteins. In this paper, we review three different approaches for predicting protein retention time in HIC, based either on a protein's structure or on its amino-acidic composition, and we have extended one of these approaches. The first approach correlates the protein retention time in HIC with the protein average surface hydrophobicity. This methodology is based on the protein three-dimensional structure data and considers the hydrophobic contribution of the exposed amino acid residues as a weighted average. The second approach, which we have extended, is based on the high correlation level between the average surface hydrophobicity of a protein's hydrophobic interacting zone and its retention time in HIC. Finally, a third approach carries out a prediction of the average surface hydrophobicity of a protein, using only its amino-acidic composition, without knowing its three-dimensional structure. These models would make it possible to test different operating conditions for the purification of a target protein by computer simulations, and thus make it easier to select the optimal conditions, contributing to the rational design and optimization of the process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号