首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M G Shou  S K Yang 《Chirality》1990,2(3):141-149
Enantiomeric pairs of 1-hydroxy-3-hydroxymethylcholanthrene (1-OH-3-OHMC), 3-methylcholanthrene (3MC) trans- and cis-1,2-diols, and 1-hydroxy-3-methylcholanthrene (1-OH-3MC) were resolved by HPLC using a covalently bonded (R)-N-(3,5-dinitrobenzoyl)phenylglycine chiral stationary phase (Pirkle type 1A) column. The absolute configuration of an enantiomeric 3MC trans-1,2-diol was established by the exciton chirality CD method following conversion to a bis-p-N,N-dimethylaminobenzoate. Incubation of an enantiomeric 1-OH-3MC with rat liver microsomes resulted in the formation of enantiomeric 3MC trans- and cis-1,2-diols; the absolute configurations of the enantiomeric 1-OH-3MC and 3MC cis-1,2-diol were established on the basis of the absolute configuration of an enantiomeric 3MC trans-1,2-diol. Absolute configurations of enantiomeric 1-OH-3-OHMC were determined by comparing their CD spectra with those of enantiomeric 1-OH-3MC. The relative amount of three aliphatic hydroxylation products formed by rat liver microsomal metabolism of racemic 1-OH-3MC was 1-OH-3-OHMC greater than 3MC cis-1,2-diol greater than 3MC trans-1,2-diol. Enzymatic hydroxylation at C2 of racemic 1-OH-3MC was enantioselective toward the 1S-enantiomer over the 1R-enantiomer (approximately 3/1); hydroxylation at the C3-methyl group was enantioselective toward the 1R-enantiomer over the 1S-enantiomer (approximately 58/42). Rat liver microsomal C2-hydroxylation of racemic 1-OH-3MC resulted in a 3MC trans-1,2-diol with a (1S,2S)/(1R,2R) ratio of 63/37 and a 3MC cis-1,2-diol with a (1S,2R)/(1R,2S) ratio of 12/88, respectively.  相似文献   

2.
Lysophosphatidylinositol 4,5-bisphosphate has been reported to form ion-conducting channels in artificial membranes. If formed in vivo, mechanisms for its removal from cellular membranes would be required. Thus, possible pathways were explored in rat brain and liver microsomes. Since neither lysophosphatidylinositol 4-phosphate nor lysophosphatidylinositol 4,5-bisphosphate were acylated in experiments with [3H]arachidonic acid or [14C]oleoyl CoA, polyphosphoinositides do not participate directly in a deacylation-reacylation cycle as proposed for the postsynthesis enrichment of phosphatidylinositol with arachidonic acid. Similar enrichment in polyphosphoinositides can occur only via the rapid phosphorylation-dephosphorylation cycle linking all three phosphoinositides. Lysophosphatidyl[2-3H]inositol 4,5-bisphosphate and lysophosphatidyl[2-3H]inositol 4-phosphate were rapidly dephosphorylated to 1-acyl-sn-glycero(3)phospho(1)-D-myo-inositol by microsomes from both tissues. Appearance of only trace quantities of radioactive lysophosphatidylinositol monophosphate during the catabolism of lysophosphatidyl[2-3H]inositol 4,5-bisphosphate indicated that the second dephosphorylation step, which was cation independent, was at least as fast as the first step which required Mg2+. In the presence of ATP, CoA, and arachidonic acid, the lysophosphatidylinositol was converted to phosphatidylinositol. This acylation reaction was rate limiting in brain microsomes. Dephosphorylation of lysophosphatidylinositol 4,5-bisphosphate was rate limiting in liver microsomes. Neither the lysopolyphosphoinositides nor the lysophosphatidylinositol produced from them in the reactions were degraded by acyl hydrolases or phosphodiesterases in microsomes from either tissue. Therefore, any lysopolyphosphoinositide formed in vivo would probably be removed by dephosphorylation and recycled to phosphatidylinositol.  相似文献   

3.
Experiments with glycerophosphocholine phosphodiesterase (GPC diesterase, EC 3.1.4.2.) in rat brain microsomes suggest that, although its activity is inhibited by low concentrations of calmidazolium, its dependence on Ca2+ ions is not modulated by calmoulin. The activity of glycerophosphocholine choline phosphodiesterase (choline phosphohydrolase, EC 3.1.4.38) was much lower than that of the GPC diesterase. A relatively inexpensive method for the preparation ofsn-glycero-3-phospho [Me-14C]choline is described.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

4.
The hydrolysis of long-chain monoester of ethanediol by rat,liver subcellular fractions was investigated in order to define the carboxylic acid ester hydrolase involved and to localize the enzymic activity. We found that with 1-O-hexadecanoyl [U-14C]ethanediol as substrate, hydrolytic activity was foremost associated with the rough microsomal fraction. The pH optimum occurred at 8.5. The apparent Km and V values were 6.5 . 10(-4) M and 13 mumol/h per mg microsomal protein, respectively. Enzymic activity was inhibited by p-chloromercuribenzoate and by diisopropylfluorophosphate, whereas NaF was less effective and CaCl2 did not affect apparent activity. Amongst a number of carboxylic acid esters tested as substrate, only long-chain 1-acyl and 2-acyl glycerols inhibited acyl diol hydrolysis competitively (Ki approximately 0.9 mM). It was concluded that long-chain monoesters of ethanediol are hydrolyzed by the monoacyl glycerol lipase system associated with the rat liver microsomal fraction. Because diol monoester is also utilized by the cholinephosphotransferase system of liver to form highly lytic acyl diol phosphocholines, efficient diol monoester hydrolysis by monoglyceride lipase may be a significant step in regulating acyl diol phosphocholine levels in biological systems.  相似文献   

5.
The hydrolysis of indoxyl esters by rat esterases   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

6.
A metabolic activation system with an S9 fraction or liver microsomes was applied to a reporter gene assay in vitro for the screening of estrogenicity of chemicals. The endpoint (luciferase) was luciferase induction in cells transfected with a reporter plasmid containing an estrogen-responsive element linked to the luciferase gene. Compounds were applied to the reporter gene assay system after pretreatment or simultaneous treatment with an S9 fraction or liver microsomes. Both trans-stilbene and methoxychlor themselves showed no or little estrogenicity, but when they were treated with an S9 fraction or liver microsomes, they demonstrated strong effects, indicating their metabolites to be estrogenic. When four pyrethroid insecticides were subjected to this assay system, however, they showed no estrogenicity even with liver microsome or S9 mix treatment.  相似文献   

7.
Microsomal fractions of 14-day-old rat brain were incubated at pH 7.1 with 1-[1'-14C]-alk-1'-enyl-sn-glycero-3-phosphoethanolamine (lysoplasmalogen). 1-[1'-14C]alkenylglycerol was produced by hydrolyzing enzyme activities, which were stimulated by Mg2 and inhibited by SH-group reagents. Hydrolysis of 1-[1'-14C]alkyl-sn-glycero-3-phosphoethanolamine is very similar in this respect, but the Km value is higher in the former case. The 1-alkyl compound acts as a non-competitive inhibitor of the hydrolyzing enzyme activity described, whereas the hydrolysis of the 1-alkyl derivative is not inhibited by the 1-alkenyl compound.  相似文献   

8.
Buprenorphine is a partial opioid agonist available in France as an alternative to methadone in the treatment of opiate-dependent individuals. Twenty deaths have been reported in patients who have ingested buprenorphine in combination with benzodiazepines. Since buprenorphine and many benzodiazepines are CYP3A substrates, the effect of buprenorphine on CYP3A activity was examined in order to assess the likelihood of a pharmacokinetic interaction. The formation of 6beta-hydroxytestosterone was measured in dexamethasone-induced rat liver microsomes and in human liver microsomes under control conditions and in the presence of buprenorphine. Buprenorphine was found to be a weak inhibitor of CYP3A with a 50% decrease in enzyme activity occurring at a concentration of 118 microM (IC50) in human liver microsomes. IC50 was 0.3 microM for ketoconazole in the same system. Since the IC50 for buprenorphine is roughly 2000 times higher than typical plasma concentrations, this drug is unlikely to cause clinically significant inhibition of CYP3A in patients. Excessive CNS depression due to the combination of buprenorphine and benzodiazepines is most likely due to additive or synergistic pharmacologic effect unrelated to a pharmacokinetic interaction between the drugs.  相似文献   

9.
10.
11.
12.
Subcellular fractions of three human brain specimens were found to contain esterase activities which hydrolyzed racemic oxazepam 3-acetate (rac-OXA). All three human brain preparations were highly selective toward the S-enantiomer of rac-OXA. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    13.
    Gossypol, a polyphenolic compound found in cotton plants, has many potential uses, including use as a male antifertility drug and spermicide. Gossypol affects a variety of cell processes and many of these effects may be explained by a common underlying mechanism. Here we report that gossypol promotes the formation of oxygen radicals when incubated with rat liver microsomes and human sperm suggesting that oxygen radical production may be the underlying basis of its biological activity.  相似文献   

    14.
    Pulse-chase experiments showed that phosphatidylethanolamine (PE) was the direct precursor for ceramide-phosphoethanolamine, a sphingomyelin analogue, in the same way as phosphatidylcholine was for sphingomyelin. Ceramide-phosphoethanolamine could be identified by incorporation of radioactivity from labeled PE, as well as by its stability in alkaline methanolysis and its ability to be methylated by S-adenosyl-methionine. Ceramide-phosphoethanolamine synthesis from labeled exogenous PE seemed to be independent of exogenous ceramide; it was proportional to the amount of incubated membrane, when taking into account the isotopic dilution of labeled precursor by endogenous PE. Sphingomyelin synthesis, which was demonstrated using natural PC as a substrate, was not possible using dipalmitoyl-PC. The formation of sphingomyelin and ceramide-phosphoethanolamine was demonstrated in microsomes and plasma membranes from rat brain and liver.  相似文献   

    15.
    1. Lysosomes from rat liver contain two enzymic systems for hydrolysing phosphatidyl-inositol: a deacylation via lysophosphatidylinositol producing glycerophosphoinositol and non-esterified fatty acid, and a phospholipase C-like cleavage into inositol 1-phosphate and diaclygycerol. 2. The separate enzyme systems involved can be distinguished by gel filtration, differential temperature-stability and the inhibitory action of detergents. 3. The enzyme systems both have pH optima at 4.8 and their attack on a pure phosphatidylinositol substrate is inhibited by many bivalent metals including Ca2+ and Mg2+, and cationic drugs. 4. Whereas the deacylation system will attack other glycerophospholipids, the phospholipase C shows a marked specificity towards phosphatidylinositol, although it will also slowly attach phosphatidylcholine with the liberation of phosphocholine. 5. Gel filtration and temperature-stability distinguish the phospholipase C from lysosomal phosphatidic acid phosphatase, but not from sphingomyelinase. 6. Evidence is presented that an EDTA-insensitive phospholipase C degrading phosphatidylinositol is present in rat brain.  相似文献   

    16.
    Detailed lipid analyses of human and rat liver microsomes revealed interesting differences. It was found that human liver microsomes contain twice as much lipid as those from the rat. This increased lipid content is not associated with an increase in content of a particular lipid class; human liver microsomes contain higher amounts of each of the lipid classes. Human and rat liver microsomes differ especially in the essential fatty acid composition of total lipids and phospholipids: human liver microsomes contain more linoleic acid and less arachidonic acid than those of the rat. Such a pattern of distribution of fatty acids is similar to that previously reported for human liver mitochondria and has not been reported for other species. Although the previously reported for human liver mitochondria and has not been reported for other species. Although the unsaturation of lipids is lower in human than in rat liver microsomes, spin label studies revealed a higher fluidity in human membranes. It is suggested that this might arise from a lesser immobilization of lipids by proteins in human liver subcellular membranes.  相似文献   

    17.
    18.
    As part of an ongoing study of the role of subcellular fractions on the metabolism of nitroxides, we studied the metabolism of a set of seven nitroxides in microsomes obtained from rat liver. The nitroxides were chosen to provide information on the effects of the type of charge, lipophilicity and the ring on which the nitroxide group is located. Important variables that were studied included adding NADH, adding NADPH, induction of enzymes by intake of phenobarbital and the effects of oxygen. Reduction to nonparamagnetic derivatives and oxidation back to paramagnetic derivatives were measured by electron-spin resonance spectroscopy. In general, the relative rates of reduction of nitroxides were similar to those observed with intact cells, but the effects of the various variables that were studied often differed from those observed in intact cells. The rates of reduction were very slow in the absence of added NADH or NADPH. The relative effect of these two nucleotides changed when animals were fed phenobarbital, and paralleled the levels of NADPH cytochrome c reductase, cytochrome P-450, cytochrome b5 and NADH cytochrome c reductase; results with purified NADPH-cytochrome c reductase were consistent with these results. In microsomes from uninduced animals the rate of reduction was about 10-fold higher in the absence of oxygen. The products of reduction of nitroxides by microsomes were the corresponding hydroxylamines. We conclude that there are significant NADH- and NADPH-dependent paths for reduction of nitroxides by hepatic microsomes, probably involving cytochrome c reductases and not directly involving cytochrome P-450. From this, and from parallel studies now in progress in our laboratory, it seems likely that metabolism by microsomes is an important site of reduction of nitroxides. However, mitochondrial metabolism seems to play an even more important role in intact cells.  相似文献   

    19.
    As part of an ongoing study of the role of subcellular fractions on the metabolism of nitroxides, we studied the metabolism of a set of seven nitroxides in microsomes obtained from rat liver. The nitroxides were chosen to provide information on the effects of the type of charge, lipophilicity and the ring on which the nitroxide group is locted Important variables that were studied included adding NADH, adding, induction of enzymed by intake of phenobarbital and the effects of oxygen. Reduction of nonparamagnetic derivatives and oxidation to paramagnetic derivatives were measured by electron-spin resonance spectroscopy. In general, the relative rates of reduction of nitroxides were similar to those observed with intact cells, but the effects of the various variables that were studied often differed from those observed in intact cells. The rates of reduction were very slow in the absence of added NADh or NADPH. The relative effect of these two nucleotides changed when animals were fed phenobarbital and paralleled the levels of NADPH cytochrome c reductase, cytochrome P-450, cytochrome b5 and NADH cytochrome c reductase; results with purified NADPH-cytochrome c reductase were consistent with these results. In microsomes from uninduced animals the rate of reduction was about 10-fold higher in the absence of oxygen. The products of reduction of nitroxides by microsomes were the corresponding hydroxylmines. We conclude that there are significant NADH- and NADPH-dependent paths for reduction of nitroxides by hepatic microsomes, probably involving cytochrome c reductases and not directly involving cytochrome P-450. From this, and from parallel studies now in progress in our laboratory, it seems likely that metabolism by microsomes is an important site of reduction of nitroxides. However, mitochondrial metabolism seems to play an even more important role in intact cells.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号