首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many invasive species can respond opportunistically to favorable growing conditions. In a previous work, we found that invasive species in the family Commelinaceae were more opportunistic than their noninvasive congeners and could therefore outperform noninvasive relatives in an environment with abundant resources and no competition. Contrary to the expectation that superior performance under favorable conditions comes at the cost of reduced performance under stressful conditions, invasive species did not perform more poorly relative to noninvasive congeners under any conditions we examined. Here we expand our search for potential costs of opportunism in invasive species to additional environmental conditions in which invasive taxa have been shown or predicted to perform poorly. We grew four invasive and four noninvasive species in environments consisting of all possible combinations of high and low soil resources and presence and absence of clipping (removal of aboveground biomass). We also fed leaves of each species to a generalist herbivore to assess resistance to herbivory. We found that the advantage of invasive species is reduced but not eliminated by low soil resources and clipping. At low soil resources, invasive species produced softer leaves than noninvasive species and might therefore be less resistant to generalist herbivory than noninvasive species, although a direct comparison of resistance in a no-choice bioassay revealed no difference. The invasive species outperformed noninvasive species only under the most favorable conditions, and the noninvasive species did not outperform the invasive species in any environment.  相似文献   

2.
高寒草甸15种植物种子发芽的比较研究   总被引:3,自引:0,他引:3  
张荣  孙国钧  陈亚明  李凤民 《生态学报》2004,24(6):1150-1156
对高寒草甸 15种植物种子的发芽进行了比较实验研究。结果显示 ,冷湿层化、温度变幅及光照条件能够提高或者降低多数高寒草甸植物种子发芽率。其中 ,13种植物对层化、11种对光照条件、14种对温度变幅处理有显著性响应。 15种植物中 ,有14种对单一因子或因子组合有反应 ,仅藏嵩草种子发芽对设定的因子或因子组合没有响应。根据不同植物种子对不同处理及其组合的发芽反应可将植物种子划分为不同的反应类型 ,通过对种子进行冷湿层化处理 ,可以部分或者全部地替代某些植物种子发芽对光、温需求。探明植物种子在特定环境因子组合条件下的发芽表现 ,对通过种子恢复退化草甸是至关重要的。  相似文献   

3.
The context‐dependent defence (CDD) hypothesis predicts that defence levels of plant species against herbivory are not fixed but vary with environmental conditions, in a way that is specific for plant species that share evolutionary adaptations to resource conditions exemplified by similar maximum relative growth rates. More specifically, we expected plants from resource‐poor environments to display high defence levels but not when grown under resource‐rich conditions, whereas the reverse – plants from resource‐rich conditions displaying low defence levels but not when grown under resource‐poor conditions – is not necessarily the case. In this study, we used multiple‐choice bioassays in which leaf discs were fed to larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) as an efficient and effective way of indicating plant defence levels. This generalist herbivore was capable of detecting both inter‐ and intraspecific differences in defence among plant species. The CDD was tested by exploring the effects of various experimental resource conditions (light, nutrients) upon the herbivore preferences and by comparing these preferences with the maximum relative growth rate of plant species. The experimental results provide general support for the CDD hypothesis with respect to nutrient‐level variation but the effects were not related to the origin of the plant species tested. Variation in light conditions did not result in consistent effects upon herbivore preferences. The CDD therefore can be formulated more precisely as: defence levels of plant species vary under different environmental conditions but in a way that is specific for plant species that share evolutionary adaptations to similar nutrient conditions. This more precise CDD hypothesis is a useful addition to existing optimal‐defence theory because of its focus on the possible plastic effects of resource conditions upon plant defence levels. This is relevant when designing experimental plant–herbivore studies.  相似文献   

4.
Wetland seed banks comprise the propagules of plant species that have species-specific germination requirements for germination in either flooded or dry conditions. At the community level, wetland structure and succession during and after a seasonal flooding event depends upon the early life-history requirements of species, including germination under flooded and dry conditions. We examined the effects of simulated flood and post-flood scenarios on seedling emergence from a seed bank of seasonally flooded grassland in the Pantanal, Brazil. Field samplings were conducted in both wet and dry seasons, both of which were subject to flood and post-flood conditions. A total of 70 species emerged from the seed bank, dominated by Poaceae and Cyperaceae. Sixteen species were exclusive to the wet and one exclusive to the dry season. The richness of perennial species was higher under flood conditions, while the richness of annuals was greater post-flood. In general, the aquatic and amphibious species exhibited a significant germination response to flooding. Terrestrial species only germinated in post-flood conditions, with higher richness in the dry season. Four species had high seedling abundance in both treatments. The capacity of regeneration by seeds is high in these grasslands and can be increased by seasonal flooding and drawdown. In these seasonally flooded grasslands, we observed three main germination strategies: under flooded conditions, aquatic and amphibious species; post-flood conditions, an explosion of annual amphibious and terrestrial species; and in moist soil, perennial terrestrial species. The differential responses to flooding versus post-flood conditions help to maintain the structure and species richness in the community over time.  相似文献   

5.
Turkel S 《Mikrobiologiia》2006,75(6):737-741
Trehalose and glycogen accumulate in certain yeast species when they are exposed to unfavorable growth conditions. Accumulations of these reserve carbohydrates in yeasts provide resistance to stress conditions. The results of this study indicate that certain Pichia species do not accumulate high levels of glycogen and trehalose under normal growth conditions. However, depending on the Pichia species, both saccharides accumulate at high levels when the Pichia cells are exposed to unfavorable or stress-inducing growth conditions. Growth on glycerol or methanol mostly led to trehalose accumulation in Pichia species tested in this study. It was shown that the metabolic pathways for glycogen and trehalose biosynthesis are present in Pichia species. However, it appears that the biosynthesis of trehalose and glycogen may be regulated in different manners in Pichia species than in the yeast S. cerevisiae.  相似文献   

6.
Aims Factors limiting distributions of species are fundamental to ecology and evolution but have rarely been addressed experimentally for multiple species. The conspicuous linear distribution patterns of plant species confined to river corridors in the Central European lowlands constitute an especially long-standing distribution puzzle. We experimentally tested our novel hypothesis that the tolerance of species to river corridor conditions is independent of the degree of confinement to river corridor habitats, but that species not confined to river corridors are better able to take advantage of the more benign non-river corridor conditions.Methods We grew 42 herbaceous species differing in their confinement to river corridors in a common garden experiment on loamy soil typical for river corridor areas and sandy soil typical for non-river corridor areas, and with and without a flooding period. For a subset of species, we grew plants of both river corridor and non-river corridor origin to test for adaptation to river corridor conditions.Important findings Species more confined to river corridor areas benefited less from the more benign non-flooded and non-river corridor soil conditions than species of wider distributional range did. For subsets of 7 and 12 widespread species, the response to flooding and soil origin, respectively, did not differ between plants from river corridor sites and plants from other sites, suggesting that the habitat tolerance of widespread species is due to phenotypic plasticity rather than to local adaptation. Overall, we found clear support for our novel hypothesis that species not confined to river corridors are more able to take advantage of the more benign non-river corridor conditions. Our study provides a general hypothesis on differences between species confined to stressful habitats and widespread species out for test in further multispecies comparative experiments.  相似文献   

7.
? It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. ? Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. ? Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. ? The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions.  相似文献   

8.
Kos M  Poschlod P 《Annals of botany》2007,99(4):667-675
BACKGROUND AND AIMS: In arid environments many plant species are found associated with the canopies of woody perennials. Favourable conditions for establishment under canopies are likely to be associated with shade, but under canopies shade is distributed patchily and differs in quality. Diurnal temperature fluctuations and maximum temperatures could be reliable indicators of safe sites. Here, an examination is made as to whether canopy-associated species use temperature cues to germinate in shade patches, rather than matrix areas between trees. METHODS: The study was carried out in arid southern Kalahari savannah (Republic of South Africa). Perennial and annual species associated with Acacia erioloba trees and matrix species were germinated at temperature regimes resembling shaded and unshaded conditions. Soil temperature was measured in the field. KEY RESULTS: Germination of all fleshy-fruited perennial acacia-associated species and two annual acacia-associated species was inhibited by the temperature regime resembling unshaded conditions compared with at least one of the regimes resembling shaded conditions. Inhibition in perennials decreased with seed mass, probably reflecting that smaller seedlings are more vulnerable to drought. Germination of matrix species was not inhibited by the unshaded temperature regime and in several cases it increased germination compared with shaded temperature regimes or constant temperature. Using phylogenetically independent contrasts a significant positive relationship was found between canopy association and the germination at shade temperatures relative to unshaded temperatures. CONCLUSIONS: The data support the hypothesis that canopy species have developed mechanisms to prevent germination in open sun conditions. The results and data from the literature show that inhibition of germination at temperature regimes characteristic of open sun conditions can be found in fleshy-fruited species of widely divergent taxonomic groups. It is predicted that germination mechanisms to detect canopy shade based on temperature cues are widespread in species depending on nurse plants, especially bird-dispersed species.  相似文献   

9.
The traditional approach to understanding invasions has focused on properties of the invasive species and of the communities that are invaded. A well‐established concept is that communities with higher species diversity should be more resistant to invaders. However, most recently published field data contradict this theory, finding instead that areas with high native plant diversity also have high exotic plant diversity. An alternative environment‐based approach to understanding patterns of invasions assumes that native and exotic species respond similarly to environmental conditions, and thus predicts that they should have similar patterns of abundance and diversity. Establishment and growth of native and exotic species are predicted to vary in response to the interaction of plant growth rates with the frequency and intensity of mortality‐causing disturbances. This theory distinguishes between the probability of establishment and the probability of dominance, predicting that establishment should be highest under unproductive and undisturbed conditions and also disturbed productive conditions. However, the probability of dominance by exotic species, and thus of potential negative impacts on diversity, is highest under productive conditions. The theory predicts that a change in disturbance regime can have opposite effects in environments with contrasting levels of productivity. Manipulation of productivity and disturbance provides opportunities for resource managers to influence the interactions among species, offering the potential to reduce or eliminate some types of invasive species.  相似文献   

10.
《Aquatic Botany》2007,86(1):37-45
The preference of wetland angiosperms for waterlogged soils has been explained by several hypotheses: (1) wetland species are adapted to waterlogging and sensitive to drought; (2) wetland species are tolerant to drought, but inferior competitors at drier conditions; (3) wetland species have narrow moisture optima for recruitment. We tested these hypotheses by the application of permanent and fluctuating water levels to experimental wet dune plant communities with four species that frequently occur in wet dune slacks (Carex flacca, Molinia caerulea, Samolus valerandi and Schoenus nigricans) and one competitive species of drier conditions (Calamagrostis epigejos). After 3 years, fluctuating water levels had led to lower total biomass production than permanent water levels, indicating that switching from aerated to anoxic soil conditions involved physiological costs. The collective biomass of wetland species was highest at permanently waterlogged conditions with interspecific variation in the biomass optima. At the nutrient-poor growth conditions of this long-term experiment, biomass of Calamagrostis was independent of water level treatment, thus the hypothesized competitive superiority of this species at drier conditions could not explain the biomass responses of the wetland species in this study. Instead, this is evidence for an ecological preference of adult wet dune plants for waterlogged to moist conditions. Recruitment of most wet dune slack species occurred in a narrower range of water levels than adult growth, indicating that recruitment requirements also pose a limitation to the distribution of these wet dune species. Incorporation of recruitment into nature management support models may improve their predictions.  相似文献   

11.
Question: The prominent role of wind dispersal in alpine habitats has been recognized early but has rarely been quantified. The aim of this study is to compare wind dispersal under alpine and lowland conditions and to analyse whether differences are caused by species traits, e.g. terminal velocity of seeds (Vterm) or weather conditions. Location and Methods: We characterized wind dispersal potential of > 1100 Central European species using measured Vterm To quantify the habitat effect on wind dispersal, we measured meteorological key‐parameters and simulated dispersal distance spectra of nine selected species under typical alpine conditions (foreland of the Scaletta‐glacier, Switzerland) and typical lowland conditions (grassland in Bad Lippspringe, Germany). Results: Lowland species had higher Vterm compared to alpine species. However, this difference is absent when only species of species of open habitats are concerned. The meteorological measurements showed that the alpine habitat was mainly characterized by higher frequency and strength of updrafts. The simulations showed that under alpine conditions long distance dispersal occurred much more frequent. Conclusions: More than 50 % of the alpine species have a fair chance to be dispersed by wind over long distances, while this proportion is less than 25 % for species from open habitats in the lowland. The more prominent role of wind dispersal in alpine habitats is mainly a result of differences in environmental conditions, namely more intense vertical turbulence in the alpine habitat, and does not result from prominent differences in plant traits, namely Vterm, between alpine and lowland species.  相似文献   

12.
This paper examines the relationship between protected and endangered riverine species (target species) and hydrodynamics in river-floodplain ecosystems, combining ecological and policy-legal aspects of biodiversity conservation in river management. The importance of different hydrodynamic conditions along a lateral gradient was quantified for various taxonomic groups. Our results show that (i) target species require ecotopes along the entire hydrodynamic gradient; (ii) different parts of the hydrodynamic gradient are important to different species, belonging to different taxonomic groups; (iii) in particular low-dynamic parts are important for many species and (iv) species differ in their specificity for hydrodynamic conditions. Many species of higher plants, fish and butterflies have a narrow range for hydrodynamics and many species of birds and mammals use ecotopes along the entire gradient. Even when focussing only on target species, the entire natural hydrodynamic gradient is important. This means that the riverine species assemblage as a whole can benefit from measures focussing on target species only. River reconstruction and management should aim at re-establishing the entire hydrodynamic gradient, increasing the spatial heterogeneity of hydrodynamic conditions.  相似文献   

13.
朱佳兴  周慧  熊育久  严恩萍  莫登奎 《生态学报》2021,41(16):6665-6678
崖壁植物具有不可及或不易及的特点,有关崖壁植物的调查一直面临着高成本、高风险和难鉴定的难题。本研究创新性地提出一种采用无人机近景摄影技术对崖壁植物拍照及专家鉴定的调查方法,通过分析崖壁植物群落的Margalef、Simpson与Pielou这3种多样性指数的变化,探究海拔、光照、立地条件与水汽条件这4种因子对崖壁植物多样性的影响。研究结果表明:本次调查共发现崖壁植物267种,分属于58科、140属;崖壁植物物种数目与海拔高度变化服从正态分布,物种数量在中海拔700-800m达到峰值,Simpson指数与Pielou指数在低海拔时达到最高,随海拔的升高而下降,但不表现出明显的变化规律;崖壁植物在不同的立地条件下,植物群落的物种组成、优势种类与出现频率均有所不同;崖壁植物的相关性分析显示,在光照条件出现差异或立地条件不同时,崖壁植物各指数之间存在着不同的显著性关系;近水崖壁植物与对照组的分析结果对比显示,崖壁植物的数量与物种组成受崖壁间水汽条件的影响,崖壁水汽条件越高的地区有着更丰富的植物种类。本研究表明崖壁植物的分布特征是受海拔、光照、立地条件以及水汽条件等多因素的综合作用而成。  相似文献   

14.
1. Although studies on plant–herbivore interactions comparing different plant species are common, little is known about the importance of environmental conditions in determining variation in herbivory within single plant species. 2. This study assessed the effects of experimentally manipulated nutrient and water availability on plant palatability, and compared these differences with differences among species. The extent to which these patterns can be explained by leaf toughness and specific leaf area was also investigated. Six plant species from the subfamily Carduoideae and four free‐living leaf chewing invertebrates were used in the study. 3. Herbivore preferences were significantly affected by soil nutrients and water regime and varied among plant as well as herbivore species. Generally, herbivores preferred watered plants and plants from nutrient‐poor soil. The effects of soil nutrients and water regime differed between the plant and herbivore species. The differences between the plant species were greater than those between the environmental treatments. Differences at both levels could be partly explained by leaf toughness and specific leaf area. Leaf toughness, in particular, turned to be an important predictor indicating that herbivores preferred species with softer leaves, and species from wetter conditions with reduced leaf toughness. 4. The environmental conditions in which plants are growing have significant effects on plant palatability. Between‐species comparisons thus need to pay attention to this variation. Future studies may consider how the effects of current conditions interact with conditions of plant origin to predict possible effects of changes in environmental conditions on the intensity of plant–herbivore interactions.  相似文献   

15.
The observation of non‐random phylogenetic distribution of traits in communities provides evidence for niche‐based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic α‐ and β‐diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic α‐ and β‐diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.  相似文献   

16.
Species richness of moss landscapes unaffected by short-term fragmentation   总被引:2,自引:0,他引:2  
Martin Hoyle  Francis Gilbert 《Oikos》2004,105(2):359-367
Theory predicts that habitat fragmentation and varying corridor length and width will affect animal populations in adjoining habitat patches due to varying migration rates. Previous work on the moss/microarthropod microcosm showed that connecting moss patches with moss corridors maintained species richness and individual species abundance. By contrast, in this study there was little evidence for differences in species richness between landscapes of varying connectivity and corridor length and width. The γ diversity, the cumulative species richness of entire connected systems, followed the same pattern. Similar non-significant results were obtained for species abundance. Contrary to a previous study, I found no evidence that populations of predators were more affected by fragmentation than non-predators. Since this experiment ran during temperate environmental conditions and the previous experiments ran during more extreme conditions, I hypothesise that corridors may be more useful in reducing species extinction during extreme environmental conditions.  相似文献   

17.
We present a model for the maintenance of sexual reproduction based on the availability of resources, which is the strongest factor determining the growth of populations. The model compares completely asexual species to species that switch between asexual and sexual reproduction (sexual species). Key features of the model are that sexual reproduction sets in when resources become scarce, and that at a given place only a few genotypes can be present at the same time. We show that under a wide range of conditions the sexual species outcompete the asexual ones. The asexual species win only when survival conditions are harsh and death rates are high, or when resources are so little structured or consumer genotypes are so manifold that all resources are exploited to the same extent. These conditions largely represent the conditions in which sexuals predominate over asexuals in the field.  相似文献   

18.
The species pool hypothesis claims that the large‐scale regional species pool is the chief parameter in determining small‐scale species richness through filtering of species that can persist within a community on the basis of their tolerance of the abiotic environment. Accordingly, different environmental conditions give rise to different species assemblages. From a taxonomic perspective, under the assumption of trait conservatism, co‐occurring species that experience similar environmental conditions are likely to be more taxonomically similar than ecologically distant species. The next step consists in understanding how commonness and rarity of individual species produce the observed taxonomic diversity. In this paper, the importance of environmental filtering in regulating the taxonomic structure of rare and common plant species in the urban floras of Brussels (Belgium) and Rome (Italy) is tested. First, we computed the taxonomic diversity of the rare and common species of Brussels and Rome based on the branching topology of the Linnaean taxonomic trees. Next, using a randomization procedure, we determined whether the taxonomic diversity of the rare species was significantly higher than the diversity of the common species. Results show that, for both urban floras, common species that shape the community matrix and experience similar environmental conditions have a taxonomic diversity that is significantly lower than that of the rare species that represent a relatively incidental set of species of more ‘disperse’ origin. Finally, from a conservation/management perspective our results imply that, given their high taxonomic heterogeneity, the protection of rare species is a central issue for preserving high levels of diversity in urban areas.  相似文献   

19.
Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non‐native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta‐analytical approach to broadly evaluate whether non‐native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non‐native (157 species) and co‐occurring native species (204 species) under different temperature, CO2 and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non‐native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO2 largely inhibited native species. There was a general trend towards stronger responses among non‐native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions.  相似文献   

20.
黄土丘陵区不同立地条件下猪毛蒿种内、种间竞争   总被引:2,自引:0,他引:2       下载免费PDF全文
猪毛蒿(Artemisia scoparia)通常是黄土丘陵区撂荒演替前期群落优势种,在无人为干扰的情况下,猪毛蒿群落通常会向冰草(Agropyron cristatum)群落或阿尔泰狗娃花(Heteropappus altaicus)群落,或长芒草(Stipa bungeana)群落等演替。该文通过河阶地和梁峁阴坡中猪毛蒿生长特征的调查和种内、种间竞争田间试验,从植物竞争角度对猪毛蒿群落的演替机制给予了解释。结果表明:1)两类样地中猪毛蒿的生长都趋于小型化,有少数大个体和多数小个体,都存在异速生长现象,说明两类样地存在竞争,且对猪毛蒿的生长形态具有塑造作用; 2)由于单位地上生物量竞争效应排除了立地条件和个体大小的影响,因而比总竞争效应更能说明种对间的相对竞争能力。梁峁阴坡地和一、二级河阶地三种立地条件下,7种测试植物中对猪毛蒿的相对竞争能力以演替后期多年生植物较高,而演替前期一年生植物较低,说明演替后期种对前期种的竞争抑制是演替驱动力之一; 3)以各测试植物对猪毛蒿单位重量竞争抑制程度平均值来看,以梁峁阴坡地最大,二级河阶地次之,一级河阶地最小,说明立地条件越差,土壤资源可利用水平越低,竞争越激烈; 4)一级河阶地和梁峁阴坡地各测试植物对猪毛蒿的竞争等级发生了显著变化,说明环境条件差别较大时,植物的竞争等级会发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号