首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADPH-supported lipid peroxidation monitored by malondialdehyde (MDA) production in the presence of ferric pyrophosphate in liver microsomes was inactivated by heat treatment or by trypsin and the activity was not restored by the addition of purified NADPH-cytochrome P450 reductase (FPT). The activity was differentially solubilized by sodium cholate from microsomes, and the fraction solubilized between 0.4 and 1.2% sodium cholate was applied to a Sephadex G-150 column and subfractionated into three pools, A, B, and C. MDA production was reconstituted by the addition of microsomal lipids and FPT to specific fractions from the column, in the presence of ferric pyrophosphate and NADPH. Pool B, after removal of endogenous FPT, was highly active in catalyzing MDA production and the disappearance of arachidonate and docosahexaenoate, and this activity was abolished by heat treatment and trypsin digestion, but not by carbon monoxide. The rate of NADPH-supported lipid peroxidation in the reconstituted system containing fractions pooled from Sephadex G-150 columns was not related to the content of cytochrome P450. p-Bromophenylacylbromide, a phospholipase A2 inhibitor, inhibited NADPH-supported lipid peroxidation in both liver microsomes and the reconstituted system, but did not block the peroxidation of microsomal lipid promoted by iron-ascorbate or ABAP systems. Another phospholipase A2 inhibitor, mepacrine, poorly inhibited both microsomal and pool-B'-promoted lipid peroxidation, but did block both iron-ascorbate-driven and ABAP-promoted lipid peroxidation. The phospholipase A2 inhibitor chlorpromazine, which can serve as a free radical quencher, blocked lipid peroxidation in all systems. The data presented are consistent with the existence of a heat-labile protein-containing factor in liver microsomes which promotes lipid peroxidation and is not FPT, cytochrome P450, or phospholipase A2.  相似文献   

2.
Peroxidation of rat brain synaptosomes was assessed by the formation of thiobarbituric acid reactive products in either 50 mM potassium phosphate buffer (pH 7.4) or pH adjusted saline. In phosphate, addition of Fe2+ resulted in a dose-related increase in lipid peroxidation. In saline, stimulation of lipid peroxidation by Fe2+ was maximal at 30 uM, and was less at concentrations of 100 uM and above. Whereas desferrioxamine caused a dose-related inhibition of iron-dependent lipid peroxidation in phosphate, it stimulated lipid peroxidation with Fe2+ by as much as 7-fold in saline. The effects of desferrioxamine depended upon the oxidation state of iron, and the concentration of desferrioxamine and lipid. The results suggest that lipid and desferrioxamine compete for available iron. The data are consistent with the hypothesis that either phosphate or desferrioxamine may stimulate iron-dependent lipid peroxidation under certain circumstances by favoring formation of Fe2+/Fe3+ ratios.  相似文献   

3.
As an index lipid peroxidation, thiobarbituric acid (TBA)-reactive substances in the liver, kidney, and serum, and hydrocarbons (ethane and pentane) in the exhalation of rats injected subcutaneously with 10 mg/kg/day of methylmercuric chloride (MMC) were determined. Formation of TBA-reactive substances in the liver and kidney of rats was significantly increased 4 and 2 days after initial injection of MMC, respectively. The result for serum was similar to that for the kidney. The maximum ethane production in the exhaled gases was observed 4 days after initial injection of MMC, and thereafter decreased slowly. Pentane production was significantly increased 5 days after initial injection of MMC, and thereafter continued to increase. Glutathione peroxidase activity and amount of vitamin C in the liver were depleted 4 days after initial injection of MMC; vitamin E was not depleted. In the kidney, significant decreases of glutathione peroxidase activity and vitamin C content were also seen 4 days after initial injection of MMC, but vitamin E content was unaltered.Thus, a clear increase of lipid peroxidation as determined by measurement of TBA-reactive substances in tissues and of hydrocarbons in the exhaled gases of rats after MMC treatment was demonstrated, though there was a lag phase of several days before the increase of lipid peroxidation. It is suggested that the significant increase of lipid peroxide formation may be a result of depletion of defending factors against lipid peroxidation.  相似文献   

4.
Regulation of 5-lipoxygenase enzyme activity   总被引:3,自引:0,他引:3  
In this article, regulation of human 5-lipoxygenase enzyme activity is reviewed. First, structural properties and enzyme activities are described. This is followed by the activating factors: Ca2+, membranes, ATP, and lipid hydroperoxide. Also, studies on phosphorylation of 5-lipoxygenase and nuclear localization sequences are reviewed.  相似文献   

5.
We have investigated doxorubicin-induced lipid peroxidation by the measure of malondialdehyde (MDA) formation in rat glioblastoma cells and human breast carcinoma cells in culture. There was a significant production of MDA when the cells were incubated with pharmacologically relevant doxorubicin concentrations, i.e., concentrations that produce a significant cytotoxicity (0.1 micrograms/ml). At equitoxic doses, vincristine provided no lipid peroxidation, indicating that MDA formation is not a consequence of cell death. Doxorubicin-induced lipid peroxidation was maximal 24 h after incubation of the cells with doxorubicin, indicating that a delay was necessary for the free radical-mediated membrane damage induced by doxorubicin. In the presence of alpha-tocopherol in the culture medium, the doxorubicin-induced MDA formation was inhibited. The development of this method will help in defining the role of free radicals and lipid peroxidation in the cytotoxicity of doxorubicin.  相似文献   

6.
The arachidonate lipoxygenase from rat basophilic leukemia cells (RBL-1) is widely utilized as a model to dissect the primary enzymatic reactions leading to leukotriene formation. The purpose of the present study was to optimize the specific activity of 5-lipoxygenase prepared from a high speed supernatant of RBL-1 cell homogenates. Activation of 5-lipoxygenase was observed in the presence of micromolar levels of calcium. A synergistic enhancement of 5-lipoxygenase was observed upon addition of equally low levels of ATP; maximal activation was induced by 5 microM CaCl2 plus 5 microM ATP. Addition of a microsomal-membrane preparation and NADPH further augmented 5-HETE biosynthesis. High concentrations (330 microM) of NADPH reversed the microsomal-induced stimulation of RBL-1 5-lipoxygenase, resulting in enzyme inhibition.  相似文献   

7.
8.
9.
NADPH-dependent lipid peroxidation occurs in two distinct sequential radical steps. The first step, initiation, is the ADP-perferryl ion-catalyzed formation of low levels of lipid hydroperoxides. The second step, propagation, is the iron-catalyzed breakdown of lipid hydroperoxides formed during initiation generating reactive intermediates and products characteristic of lipid peroxidation. Propagation results in the rapid formation of thiobarbituric acid-reactive material and lipid hydroperoxides. Propagation can be catalyzed by ethylenediamine tetraacetate-chelated ferrous ion, diethylenetriamine pentaacetic acid-chelated ferrous ion, or by ferric cytochrome P-450. However, cytochrome P-450 is destroyed during propagation.  相似文献   

10.
11.
Using polyacrylamide gel electrophoresis in the presence of Na-SDS, the oligomerization of membrane proteins of the retinal rod outer segments of the frog and the wall-eyed pollock and of rabbit skeletal muscle sarcoplasmic reticulum was studied. It was shown that under storage of the retinal rod outer segments the rhodopsin oligomerization is inhibited by the lipid peroxidation inhibitor--ionol. Similar oligomerization was observed under induction of lipid peroxidation in the membranes; the accumulation of the lipid peroxidation product--malonic dialdehyde--was accompanied by disappearance of the rhodopsin monomeric form in the outer segments. The cross-linking agent--glutaric dialdehyde--also causes oligomerization of the rhodopsins. Similar aggregation is also characteristic of the major protein of the sarcoplasmic reticulum fragments, i. e. Ca2+-dependent ATP-ase. Thus, one of the main changes in the protein content of biomembranes under lipid peroxidation is the oligomerization of integral proteins due to their interaction with bifunctional reagents, i. e. lipid peroxidation products.  相似文献   

12.
Studies were carried out to determine the effects of lung and liver cytosol on pulmonary and hepatic mierosomal lipid peroxidation, to determine the cytosolic concentrations of various substances which affect lipid peroxidation, and to determine which of these substances is responsible for the effects of the cytosol on lipid peroxidation. Lung cytosol inhibits both enzymatic (NADPH-induced) and nonenzymatic (Fe2+-induced) lung microsomal lipid peroxidation. In contrast, liver cytosol stimulates lipid peroxidation in hepatic microsomes during incubation alone, enhances Fe2+-stimulated lipid peroxidation, and has no effect on the NADPH-induced response. Substances which are known to be involved in inhibition of lipid peroxidation, including glutathione, glutathione reductase, glutathione peroxidase, and superoxide dismutase, are found in greater concentrations in liver cytosol than in lung cytosol. However, ascorbate is found in approximately equal concentrations in pulmonary and hepatic cytosol. Most of the effects of the cytosol on lipid peroxidation seem to be due to ascorbate and glutathione. For example, ascorbate, in concentrations found in lung cytosol, inhibits lung microsomal lipid peroxidation to about the same extent as the cytosol. The effects of liver cytosol on hepatic microsomal lipid peroxidation can be duplicated by concentrations of ascorbate and glutathione normally found in the cytosol; i.e., ascorbate stimulates and glutathione inhibits lipid peroxidation with the net effect being similar to that of liver cytosol. The results indicate that ascorbate has opposite effects on pulmonary and hepatic microsomal lipid peroxidation and suggest that ascorbate plays a major role in protecting pulmonary tissue against the harmful effects of lipid peroxidation.  相似文献   

13.
14.
Lipids are the essential components of cell membranes and lipoproteins. Their peroxidation plays an important role in numerous pathologies in which oxidative stress is involved. Lipid peroxidation occurs through a chain reaction that contributes to membrane damage in cells. It results in the conversion of fatty acids to polar hydroperoxides and leads to the breakdown or malfunction of the membrane. Lipids are amphiphilic molecules that aggregate in aqueous solutions into micelles and liposomes. The effect of this structural organization is significant in studies of radiation-induced peroxidation damage in highly ordered biological systems such as biological membranes. In this paper, a synthesis of the data concerning radioinduced lipid peroxidation is completed by an original review of the different parameters that determine lipid oxidizability. In addition, the influence of lipid aggregation and the effect of molecular packing are discussed.  相似文献   

15.
The stimulation of microsomal lipid peroxidation by FeSO4 and cysteine has been investigated. Although both FeSO4 and cysteine alone promoted an increase in malonaldehyde production, when these agents were added together to microsomes the resultant level of malonaldehyde was greater than the sum of the amounts formed by these pro-oxidants when acting individually. A further indication of an interaction between FeSO4 and cysteine was shown by the inhibitory action of chelating agents. Stimulation of peroxidation was shown to be independent of microsomal protein, including cytochrome P-450. The system has been characterized for the effects of cysteine, Fe2+ and O2 concentrations, pH, temperature and antioxidants. The results indicate that the high level of peroxidation attained with this system, its non-enzymic character and the involvement of hydroxyl radicals make it particularly useful for the investigation of the action of antioxidants. Furthermore it may also be a model of way in which decompartmentalized, delocalized or 'free' iron initiates peroxidation in vivo.  相似文献   

16.
Potato 5-lipoxygenase (5-PLO) catalyzes the reduction of 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13-HPOD) in the presence of vitamin E. I mol of vitamin E is required to consume 2 mol of 13-HPOD. The mechanism of the 5-PLO-catalyzed oxidation of vitamin E by 13-HPOD is similar to that previously established for the soybean 15-lipoxygenase (L-1)-catalyzed oxidation of phenidone by 13-HPOD, and seems to involve a one-electron reduction of the O-O bond of 13-HPOD. 5-PLO and L-1 exhibit very different substrate specificities and pH profiles for their peroxidase-like activity. Actually, among the 20 compounds containing various reducible functions and the 10 derivatives of vitamin E which have been studied, only four products containing hydrophobic long chains, ascorbic acid 6-palmitate, the trolox esters of octanol and undecanol, and vitamin E exhibit high peroxidase-like activities for 5-PLO. On the contrary, much more compounds, even not very hydrophobic, are good substrates for the peroxidase-like activity of L-1.  相似文献   

17.
5-Lipoxygenase (5-LO) is a key enzyme involved into biosynthesis of leukotrienes (LTs), mediating the host defense system, and acting simultaneously as inflammatory agents. In this work the effect of anionic cholesterol derivatives on 5-LO activity has been investigated. Cholesterol sulfate activates human polymorphonuclear leukocytes (PMNL) and stimulates their adhesion to endothelium and collagen. Cholesterol sulfate and cholesterol phosphate suppressed leukotriene production in PMNL and in rat basophil leukemia (RBL-1) cell line as well as in homogenates of these cells. Kinetic characteristics of the effect of anionic cholesterol derivatives on leukotriene synthesis have been obtained. In all experiments cholesterol phosphate (charge-2) was shown to be more potent inhibitor than cholesterol sulfate (charge-1). We believe that this fact highlights the importance of negatively charged ester groups for suppression of 5-LO activity.  相似文献   

18.
Pande AH  Moe D  Nemec KN  Qin S  Tan S  Tatulian SA 《Biochemistry》2004,43(46):14653-14666
Mammalian 5-lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid (AA) to leukotrienes, potent inflammatory mediators. 5-LO is activated by a Ca(2+)-mediated translocation to membranes, and demonstrates the characteristic features of interfacially activated enzymes, yet the mechanism of membrane binding of 5-LO is not well understood. In an attempt to understand the mechanism of lipid-mediated activation of 5-LO, we have studied the effects of a large set of lipids on human recombinant 5-LO activity, as well as mutual structural effects of 5-LO and membranes. In the presence of 0.35 mM phosphatidylcholine (PC) and 0.2 mM Ca(2+), there was substrate inhibition at >100 microM AA. Data analysis at low AA concentrations yielded the following: K(m) approximately 103 microM and k(cat) approximately 56 s(-1). 5-LO activity was supported by PC more than by any other lipid tested except for a cationic lipid, which was more stimulatory than PC. Binding of 5-LO to zwitterionic and acidic membranes was relatively weak; the extent of binding increased 4-8 times in the presence of Ca(2+), whereas binding to cationic membranes was stronger and essentially Ca(2+)-independent. Polarized attenuated total reflection infrared experiments implied that 5-LO binds to membranes at a defined orientation with the symmetry axis of the putative N-terminal beta-barrel tilted approximately 45 degrees from the membrane normal. Furthermore, membrane binding of 5-LO resulted in dehydration of the membrane surface and was paralleled with stabilization of the structures of both 5-LO and the membrane. Our results provide insight into the understanding of the effects of membrane surface properties on 5-LO-membrane interactions and the interfacial activation of 5-LO.  相似文献   

19.
Haemoglobin stimulates the peroxidation of lipids in two discernable phases. The first phase is inhibited by binding haemoglobin to the protein haptoglobin. The second phase is stimulated by complexable iron released from the haemoglobin molecule during the process of lipid peroxidation. This latter peroxidation is inhibitable by transferrin and the iron chelator desferrioxamine. Heat-denatured haemoglobin and haemin both stimulated lipid peroxidation but this is not inhibitable by haptoglobin. It is suggested that the haptoglobins play an important antioxidant role in vivo by preventing iron-stimulated formation of oxygen radicals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号