首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscular functions decline and muscle mass decreases during ageing. In the rat, there is a 27% decrease in muscle protein between 18 and 34 months of age. We examined age-related changes in the proteasome-dependent proteolytic pathway in rats at 4, 18, 24, 29 and 34 months of age. The three best characterised activities of the proteasome (chymotrypsin-like, trypsin-like and peptidylglutamyl peptide hydrolase) increased to 29 months and then decreased in the senescent animal. These variations in activity were accompanied by an identical change in the quantity of 20S proteasome measured by Western blot, whereas the S4 subunit of the 19S regulator and the quantity of ubiquitin-linked proteins remained constant. mRNA of subunits C3, C5, C9, and S4 increased in the senescent animal, but ubiquitin mRNA levels were unchanged. These findings suggest that the 20S proteasome may be partly responsible for the muscular atrophy observed during ageing in the rat.  相似文献   

2.
The dynamics of the expression of LMP7 and LMP2 proteasome subunits during embryonic and early postnatal development of rat spleen and liver was studied in comparison with the dynamics of chymotrypsin-like and caspase-like proteasome activities and expression of MHC (major histocompatibility complex) class I molecules. The distribution of LMP7 and LMP2 immune subunits in spleen and liver cells was also evaluated throughout development. The common tendency of both organs to increase the expression of both LMP7 and LMP2 subunits on the 21st postnatal day (P21) was found. However, the total proteasome level was shown to be constant. At certain developmental stages, the dynamics of immune subunits expression in the spleen and liver was different. While the gradual enhancement of both immune subunits was observed on P1, P18 and P21 in the spleen, the periods of gradual increase observed on E16 (the 16th embryonic day) and E18 gave way to a period of decrease in immune subunits on P5 in the liver. This level did not reliably change until P18 and increased on P21. The revealed changes were accompanied by an increase in chymotrypsin-like activity and a decrease in caspase-like activity in the spleen at P21 compared to the embryonic period. This indicates the increase in proteasome ability to form antigenic epitopes for MHC class I molecules. In the liver, both activities increased compared to the embryonic period by P21. The dynamics of caspase-like activity can be explained not only by the change of proteolytic constitutive and immune subunits, but also by additional regulatory mechanisms. Moreover, it was discovered that the increase in the expression of immune subunits during early spleen development is associated with the process of formation of white pulp by B- and T-lymphocytes enriched with immune subunits. In the liver, the increase in the level of immune subunits by P21 was also accompanied by an increase of their expression in hepatocytes. While the decrease of their level by P5 may be associated with the fact that the liver has lost its function as the primary lymphoid organ in the immune system by this time, as well as with the disappearance of B-lymphocytes enriched with immune proteasomes. In the spleen and the liver, MHC class I molecules were found during the periods of increased levels of proteasome immune subunits. On E21, the liver was enriched with neuronal nitric oxide synthase (nNOS); the level of nNOS decreased after birth and then increased by P18. This fact indicates the possibility of the induction of expression of the LMP7 and LMP2 immune subunits in hepatocytes via a signaling pathway involving nNOS. These results indicate that compared to the rat liver cells, splenic T cell immune response develops in rats starting around P19–P21. First, a T-area of white pulp is formed in the spleen during this period. Second, an increased level of immune proteasomes and MHC class I molecules in hepatocytes can ensure the formation of antigenic epitopes from foreign proteins and their delivery to the cell surface for subsequent presentation to cytotoxic T-lymphocytes.  相似文献   

3.
The proteasome represents a major intracellular proteolytic system responsible for the degradation of oxidized and ubiquitinated proteins in both the nucleus and cytoplasm. We have previously reported that proteasome undergoes modification by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and exhibits declines in peptidase activities during cardiac ischemia/reperfusion. This study was undertaken to characterize the effects of HNE on the structure and function of the 20S proteasome. To assess potential tissue-specific differences in the response to HNE, we utilized purified 20S proteasome from heart and liver, tissues that express different proteasome subtypes. Following incubation of heart and liver 20S proteasome with HNE, changes in the 2D gel electrophoresis patterns and peptidase activities of the proteasome were evaluated. Proteasome subunits were identified by mass spectrometry prior to and following treatment with HNE. Our results demonstrate that specific subunits of the 20S proteasome are targeted for modification by HNE and that modified proteasome exhibits selective alterations in peptidase activities. The results provide evidence for a likely mechanism of proteasome inactivation in response to oxidative stress particularly during cardiac ischemia/reperfusion.  相似文献   

4.
Age-dependent declines in proteasome activity in the heart.   总被引:7,自引:0,他引:7  
The proteasome is a major intracellular proteolytic system involved in the removal of oxidized and ubiquitinated protein and the induction of certain stress response pathways. In this study, age-dependent alterations in proteasome function were investigated to gain insight into potential factors which contribute to increased susceptibility to various forms of heart disease during aging. Proteasome activity in cellular extracts prepared from Fisher 344 rat hearts was found to decrease with age. These declines in activity were associated with a decreased 20S proteasome content and loss of specific activities. As determined by two-dimensional gel electrophoresis of purified 20S proteasome, the distribution and silver staining intensities of enzyme subunits were found to vary with age, suggesting that alterations in proteasome subunit composition and/or structure are involved in age-related declines in proteasome activity. In addition, age-dependent increases in the levels of oxidized and ubiquitinated proteins, known substrates of the proteasome, were observed. Thus, loss in proteasome function may impair the ability of myocytes to mount an appropriate response to stress, thereby enhancing the susceptibility of the aging heart to cardiovascular disease.  相似文献   

5.
We examined the alterations in 20S proteasome homeostasis, protein oxidation, and cell viability that occur during the stationary phase or chronological model of yeast aging. Data in this report demonstrate that proteasome subunit expression is increased, proteasome composition is altered, and levels of individual proteasome proteolytic activities are elevated during stationary phase-induced aging in Saccharomyces cerevisiae. Despite such alterations, a progressive loss of proteasome-mediated protein degradation and a significant increase in protein oxidation were observed in cells maintained under stationary phase conditions. Deletion of UMP1, a gene necessary for 20S proteasome biogenesis, had no effect on cellular viability under normal growth conditions, but impaired the ability of cells to survive under stationary phase conditions. During stationary phase, the levels of oxidized protein increased more rapidly and to higher levels in the mutant lacking UMP1 than in the wild-type cells. Taken together, these data implicate a role for proteasome synthesis and altered 20S proteasome composition in maintaining viability during stationary phase, and demonstrate that even with these modifications a gradual loss of proteasome-mediated protein degradation occurs during stationary phase-induced aging. These data also suggest a role for impaired proteasome-mediated protein degradation in increased protein oxidation and cell death observed during the aging of eukaryotic cells.  相似文献   

6.
Prevention of oxidative stress via antioxidants attenuates diaphragm myofiber atrophy associated with mechanical ventilation (MV). However, the specific redox-sensitive mechanisms responsible for this remain unknown. We tested the hypothesis that regulation of skeletal muscle proteolytic activity is a critical site of redox action during MV. Sprague-Dawley rats were assigned to five experimental groups: 1) control, 2) 6 h of MV, 3) 6 h of MV with infusion of the antioxidant Trolox, 4) 18 h of MV, and 5) 18 h of MV with Trolox. Trolox did not attenuate MV-induced increases in diaphragmatic levels of ubiquitin-protein conjugation, polyubiquitin mRNA, and gene expression of proteasomal subunits (20S proteasome alpha-subunit 7, 14-kDa E2, and proteasome-activating complex PA28). However, Trolox reduced both chymotrypsin-like and peptidylglutamyl peptide hydrolyzing (PGPH)-like 20S proteasome activities in the diaphragm after 18 h of MV. In addition, Trolox rescued diaphragm myofilament protein concentration (mug/mg muscle) and the percentage of easily releasable myofilament protein independent of alterations in ribosomal capacity for protein synthesis. In summary, these data are consistent with the notion that the protective effect of antioxidants on the diaphragm during MV is due, at least in part, to decreasing myofilament protein substrate availability to the proteasome.  相似文献   

7.
The goal of this research was to evaluate the roles of calpains and their interactions with the proteasome and the lysosome in degradation of individual sarcomeric and cytoskeletal proteins in cultured muscle cells. Rat L8-CID muscle cells, in which we expressed a transgene calpain inhibitor (CID), were used in the study. L8-CID cells were grown as myotubes after which the relative roles of calpain, proteasome and lysosome in total protein degradation were assessed during a period of serum withdrawal. Following this, the roles of proteases in degrading cytoskeletal proteins (desmin, dystrophin and filamin) and of sarcomeric proteins (alpha-actinin and tropomyosin) were assessed. Total protein degradation was assessed by release of radioactive tyrosine from pre-labeled myotubes in the presence and absence of protease inhibitors. Effects of protease inhibitors on concentrations of individual sarcomeric and cytoskeletal proteins were assessed by Western blotting. Inhibition of calpains, proteasome and lysosome caused 20, 62 and 40% reductions in total protein degradation (P<0.05), respectively. Therefore, these three systems account for the bulk of degradation in cultured muscle cells. Two cytoskeletal proteins were highly-sensitive to inhibition of their degradation. Specifically, desmin and dystrophin concentrations increased markedly when calpain, proteasome and lysosome activities were inhibited. Conversely, sarcomeric proteins (alpha-actinin and tropomyosin) and filamin were relatively insensitive to the addition of protease inhibitors to culture media. These data demonstrate that proteolytic systems work in tandem to degrade cytoskeletal and sarcomeric protein complexes and that the cytoskeleton is more sensitive to inhibition of degradation than the sarcomere. Mechanisms, which bring about changes in the activities of the proteases, which mediate muscle protein degradation are not known and represent the next frontier of understanding needed in muscle wasting diseases and in muscle growth biology.  相似文献   

8.
Developmental motoneuron cell death and neurotrophic factors   总被引:5,自引:0,他引:5  
During the development of higher vertebrates, motoneurons are generated in excess. In the lumbar spinal cord of the developing rat, about 6000 motoneurons are present at embryonic day 14. These neurons grow out axons which make contact with their target tissue, the skeletal muscle, and about 50% of the motoneurons are lost during a critical period from embryonic day 14 until postnatal day 3. This process, which is called physiological motoneuron cell death, has been the focus of research aiming to identify neurotrophic factors which regulate motoneuron survival during this developmental period. Motoneuron cell death can also be observed in vitro when the motoneurons are isolated from the embryonic avian or rodent spinal cord. These isolated motoneurons and other types of primary neurons have been a useful tool for studying basic mechanisms underlying neuronal degeneration during development and under pathophysiological conditions in neurodegenerative disorders. Accumulating evidence from such studies suggests that some specific requirements of motoneurons for survival and proper function may change during development. The focus of this review is a synopsis of recent data on such specific mechanisms.  相似文献   

9.
Decapod crustaceans grow discontinuously and gain size through complex molt processes. The molt comprises the loss of the old cuticle and, moreover, substantial reduction and re-organization of muscles and connective tissues. In adult lobsters, the muscle tissue of the massive claws undergoes significant atrophy of 40-75% before ecdysis. The degradation of this tissue is facilitated by calcium-dependent proteases and by the proteasome, an intra-cellular proteolytic multi-enzyme complex. In contrast to the adults, the involvement of the proteasome during the larval development is yet not validated. Therefore, we developed micro-methods to measure the 20S and the 26S proteasomal activities within mg- and sub-mg-quantities of the larval claw tissue of the European lobster, Homarus gammarus. Within the three larval stages (Z1-3) we distinguished between sub-stages of freshly molted/hatched (post-molt), inter-molt, and ready to molt (pre-molt) larvae. Juveniles were analyzed in the post-molt and in the inter-molt stage. The trypsin-like, the chymotrypsin-like, and the peptidyl-glutamyl peptide hydrolase activity (PGPH) of the 20S proteasome increased distinctly from freshly hatched larvae to pre-molt Z1. During the Z2 stage, the activities were highest in the post-molt animals, decreased in the inter-molt animals and increased again in the pre-molt animals. A similar but less distinct trend was evident in the Z3 stages. In the juveniles, the proteasomal activities decreased toward the lowest values. A similar pattern was present for the chymotrypsin-like activity of the 26S proteasome. The results show that the proteasome plays a significant role during the larval development of lobsters. This is not only reflected by the elevated activities, but also by the continuous change of the trypsin/chymotrypsin-ratio which may indicate a shift in the subunit composition of the proteasome and, thus, a biochemical adjustment to better cope with elevated protein turnover rates during larval development.  相似文献   

10.
Insulin-dependent diabetes mellitus is known to go along with enhanced muscle protein breakdown. Since evidence has been presented that the ubiquitin-proteasome system is significantly involved in muscle wasting under this condition, we have investigated, whether this biological role goes along with alterations of the proteasome system in skeletal muscle of streptozotocin-diabetic rats. Previously, we have found a drop of overall proteasome activity in muscle extracts of rats after induction of diabetes but no change in total amount of 20S proteasome was detected. In the present investigation under the same diabetic conditions we have measured a significant decrease in the amount of proteasome activator PA28, a finding that explains the loss of total proteasome activity. Since increased mRNA levels of proteasome subunits have been measured in muscle tissue of rats after induction of diabetes, we have isolated and purified 20S proteasomes from muscle tissue of control and 6 days diabetic rats. The specific chymotrypsin-like, trypsin-like, and peptidylglutamylpeptide-hydrolysing activities of proteasomes from diabetic and control rats were found to be not significantly different. Therefore, we have fractionated 20S proteasomes into their subtypes and detected that induction of diabetes mellitus effects a redistribution of subtypes of all three proteasome populations but only the increase in subtype V (immuno-subtype) was statistically significant. This altered subtype pattern obviously meets the requirements to the system under wasting conditions. Since this process goes along with de novo biogenesis of 20S proteasomes, it most likely explains the phenomenon of elevated mRNA concentrations of proteasome subunits after induction of diabetes mellitus.  相似文献   

11.
The ubiquitin-proteasome system is thought to play a major role in normal muscle protein turnover and to contribute to diabetes-induced protein wasting in skeletal muscle. However, its importance in cardiac muscle is not clear. We measured heart muscle mRNA for ubiquitin and for the C2 and C8 proteasomal subunits, the amount of free ubiquitin and the proteasome chymotrypsin-like proteolytic activity in control and diabetic rats. Results were compared to those in skeletal muscle (rectus). Heart ubiquitin, C2 and C8 subunit mRNA and proteolytic activity were significantly greater than in skeletal muscle (P 相似文献   

12.
The effect of hind-limb immobilization on selected lysosomal enzyme activities was studied in rat hind-limb muscles composed primarily of type I, IIA, or IIB fibers. Following immobilization, acid protease and acid phosphatase both exhibited significant (P less than 0.05) increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.  相似文献   

13.
The proteasome-dependent protein degradation participates in multiple essential cellular processes. Modulation of proteasomal activities may alter cardiac function and disease phenotypes. However, cardiovascular studies reported thus far have yielded conflicting results. We hypothesized that a contributing factor to the contradicting literature may be caused by existing proteasome heterogeneity in the myocardium. In this investigation, we provide the very first direct demonstration of distinct proteasome subpopulations in murine hearts. The cardiac proteasome subpopulations differ in their molecular compositions and proteolytic activities. Furthermore they were distinguished from proteasome subpopulations identified in murine livers. The study was facilitated by the development of novel protocols for in-solution isoelectric focusing of multiprotein complexes in a laminar flow that support an average resolution of 0.04 pH units. Utilizing these protocols, the majority of cardiac proteasome complexes displayed an isoelectric point of 5.26 with additional subpopulations focusing in the range from pH 5.10 to 5.33. In contrast, the majority of hepatic 20 S proteasomes had a pI of 5.05 and focused from pH 5.01 to 5.29. Importantly proteasome subpopulations degraded specific model peptides with different turnover rates. Among cardiac subpopulations, proteasomes with an approximate pI of 5.21 showed 40% higher trypsin-like activity than those with pI 5.28. Distinct proteasome assembly may be a contributing factor to variations in proteolytic activities because proteasomes with pI 5.21 contained 58% less of the inducible subunit beta 2i compared with those with pI 5.28. In addition, dephosphorylation of 20 S proteasomes demonstrated that besides molecular composition posttranslational modifications largely contribute to their pI values. These data suggest the possibility of mixed 20 S proteasome assembly, a departure from the currently hypothesized two subpopulations: constitutive and immuno forms. The identification of multiple distinct proteasome subpopulations in heart provides key mechanistic insights for achieving selective and targeted regulation of this essential protein degradation machinery. Thus, proteasome subpopulations may serve as novel therapeutic targets in the myocardium.  相似文献   

14.
Monoclonal antibodies (MAbs) were used as probes for molecular differences in the surfaces of nonterminally differentiated cells of the developing chick limb. The specificity of the MAbs was determined by immunofluorescent localization performed on cultured breast muscle and limb bud cells and cryosections of a variety of embryonic (stages 15-37) and neonatal tissues. Subpopulations of MAb-positive and -negative cells were isolated by fluorescence-activated cell sorting and their developmental potential was assessed in vitro. Cells of the compacted somite, lateral plate mesoderm, and early limb bud were labeled with the CSAT MAb. Myogenic precursors of the dermatome and limb bud were labeled with the CSAT and L4 MAbs. Chondrogenic precursors of the sclerotome and limb bud were labeled with the CSAT, L4, and C5 MAbs. These precursors were distinguished from fibroblasts which were labeled with the CSAT and C1 MAbs. The differentiation and maturation of muscle and cartilage were accompanied by alterations in the labeling patterns of the MAbs. These results indicate that combinations of these MAbs can be used to distinguish mesenchymal, myogenic, and chondrogenic precursors, identify their site of origin during development, and isolate subpopulations of embryonic cells.  相似文献   

15.
In maturation process of tracheary element (TE) differentiation, many hydrolases are activated to execute programmed cell death of TEs. Such hydrolases are released from maturing TEs into extracellular space. The release of hydrolases should be harmful to surrounding cells. The TED4 protein, a tentative plant non-specific lipid transfer protein that is expressed preferentially in TE-induced culture of zinnia (Zinnia elegans L.), is secreted into the apoplastic space prior to and associated with morphological changes of TEs. Our studies on the interrelationship between the TED4 protein and proteolytic activities using an in vitro TE differentiation system of zinnia revealed the following facts. (1) Active proteasome is released into medium at maturation stage of TE differentiation. (2) The TED4 protein forms a complex with proteasome in culture medium. (3) The TED4 protein inhibits proteasome activity in the medium and crude extracts of zinnia cells. (4) The depletion of the TED4 protein from culture medium results in an increase in mortality of other living cells. These results strongly suggest that the secreted TED4 protein acts as an inhibitor of proteasome to protect other cells from undesirable injury due to proteolytic activities exudated from dying TEs.  相似文献   

16.
Immobilization produces morphological, physiological, and biochemical alterations in skeletal muscle leading to muscle atrophy and long periods of recovery. Muscle atrophy during disuse results from an imbalance between protein synthesis and proteolysis but also between apoptosis and regeneration processes. This work aimed to characterize the mechanisms underlying muscle atrophy and recovery following immobilization by studying the regulation of the mitochondria-associated apoptotic and the ubiquitin-proteasome-dependent proteolytic pathways. Animals were subjected to hindlimb immobilization for 4-8 days (I4 to I8) and allowed to recover after cast removal for 10-40 days (R10 to R40). Soleus and gastrocnemius muscles atrophied from I4 to I8 to a greater extent than extensor digitorum longus and tibialis anterior muscles. Gastrocnemius muscle atrophy was first stabilized at R10 before being progressively reduced until R40. Polyubiquitinated proteins accumulated from I4, whereas the increased ubiquitination rates and chymotrypsin-like activity of the proteasome were detectable from I6 to I8. Apoptosome and caspase-3 or -9 activities increased at I6 and I8, respectively. The ubiquitin-proteasome-dependent pathway was normalized early when muscle stops to atrophy (R10). By contrast, the mitochondria-associated apoptotic pathway was first downregulated below basal levels when muscle started to recover at R15 and completely normalized at R20. Myf 5 protein levels decreased from I4 to I8 and were normalized at R10. Altogether, our results suggest a two-stage process in which the ubiquitin-proteasome pathway is rapidly up- and downregulated when muscle atrophies and recovers, respectively, whereas apoptotic processes may be involved in the late stages of atrophy and recovery.  相似文献   

17.
Immobilization is characterized by activation of the ubiquitin (Ub)-proteasome-dependent proteolytic system (UPS) and of the mitochondrial apoptotic pathway. Increased oxidative stress and inflammatory response occur in immobilized skeletal muscles. Curcumin exhibits antioxidant and anti-inflammatory properties, blocked proteasome activation in intact animals, and may favor skeletal muscle regeneration. We therefore measured the effects of curcumin on immobilization-induced muscle atrophy and subsequent recovery. Rats were subjected to hindlimb immobilization for 8 days (I8) and allowed to recover for 10 days (R10). Fifty percent of the rats were injected daily with either curcumin or vehicle. Proteolytic and apoptotic pathways were studied in gastrocnemius muscles. Curcumin treatment prevented the enhanced proteasome chymotrypsin-like activity and the trend toward increased caspase-9-associated apoptosome activity at I8 in immobilized muscles. By contrast, the increase of these two activities was blunted by curcumin at R10. Curcumin did not reduce muscle atrophy at I8 but improved muscle recovery at R10 and the cross-sectional area of muscle fibers of immobilized muscles. Curcumin reduced the increased protein levels of Smac/DIABLO induced by immobilization and enhanced the elevation of X-linked inhibitory apoptotic protein levels at R10. Ub-conjugate levels and caspase-3 activity increased at I8 and were normalized at R10 without being affected by curcumin treatment. Altogether, the data show that curcumin treatment improved recovery during reloading. The effect of curcumin during the atrophic phase on proteasome activities may facilitate the initiation of muscle recovery after reloading. These data also suggest that this compound may favor the initial steps of muscle regeneration.  相似文献   

18.
19.
20.
We studied the role of the ubiquitin-proteasome system in rat skeletal muscle during sepsis and subsequent recovery. Sepsis was induced with intraperitoneal zymosan injections. This model allows one to study a sustained and reversible catabolic phase and mimics the events that prevail in septic and subsequently recovering patients. In addition, the role of the ubiquitin-proteasome system during muscle recovery is poorly documented. There was a trend for increased ubiquitin-conjugate formation in the muscle wasting phase, which was abolished during the recovery phase. The trypsin- and chymotrypsin-like peptidase activities of the 20S proteasome peaked at day 6 following zymosan injection (i.e. when both muscle mass and muscle fiber cross-sectional area were reduced the most), but remained elevated when muscle mass and muscle fiber cross-sectional area were recovering (11 days). This clearly suggests a role for the ubiquitin-proteasome pathway in the muscle remodeling and/or recovery process. Protein levels of 19S complex and 20S proteasome subunits did not increase throughout the study, pointing to alternative mechanisms regulating proteasome activities. Overall these data support a role for ubiquitin-proteasome dependent proteolysis in the zymosan septic model, in both the catabolic and muscle recovery phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号