首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular signaling mediated by calcium ions has been implicated as important in controlling cell activity. The ability of calcium ionophore (A23187), which causes an increase in calcium ion concentration in the cytoplasm, to alter the pattern of differentiation of cells during sea urchin development was examined. The addition of A23187 to embryos for 3h during early cleavage causes dramatic changes in their development during gastrulation. Using tissue-specific cDNA probes and antibodies, it was shown that A23187 causes the disruption of oral–aboral ectoderm differentiation of sea urchin embryos. The critical period for A23187 to disturb the oral–aboral ectoderm differentiation is during the cleavage stage, and treatment of embryos with A23187 after that time has little effect. The A23187 does not affect the formation of the three germ layers. These results indicate that intracellular signals mediated by calcium ions may play a key role in establishment of the oralaboral axis during sea urchin development.  相似文献   

2.
To gain information on the process of ectoderm patterning, the animal halves of sea urchin embryos were isolated at various stages, and their morphology was examined when control embryos developed into pluteus larvae. The animal halves separated at the 8-cell stage developed into 'dauerblastula', without showing any conspicuous ectoderm differentiation. In contrast, some of the animal halves isolated at the 60-cell stage (after the sixth cleavage) formed a ciliated band and oral opening, suggesting that some patterning signal was transmitted from the vegetal to animal hemisphere during early cleavage. Further patterning of the animal hemisphere did not seem to occur until hatching, since both the animal halves isolated at the 60-cell stage and hatching stage showed the same degree of ectoderm patterning. After hatching, the later animal halves were isolated, the more patterned ectoderm they formed. The animal halves isolated just prior to gastrulation differentiated well-patterned ectoderm. It is of note, however, that the level of separation was a more crucial factor than the timing of separation; even the animal fragments of newly hatched embryos differentiated well-patterned ectoderm if they had been separated at a subequatorial level. This suggests that the signal for ectoderm patterning is transmitted over the equator after hatching, and once the cells in the supra-equatorial region receive the signal, they, in turn, can transmit the signal upwardly. Interestingly, if the third cleavage plane was shifted toward the vegetal pole, the isolated animal pole-side fragments developed into 'embryoids' with fully patterned ectoderm. These results indicate that not the micromere descendants but the subequatorial cytoplasm plays an important role in ectoderm patterning.  相似文献   

3.
4.
The behavior and differentiation processes of pigment cells were studied in embryos of a tropical sea urchin Echinometra mathaei, whose egg volume was one half of those of well-known sea urchin species. Owing to earlier accumulation of pigments, pigment cells could be detected in the vegetal plate even before the onset of gastrulation, distributed dorsally in a hemi-circle near the center of the vegetal plate. Although some pigment cells left the archenteron during gastrulation, most of them remained at the archenteron tip. At the end of gastrulation, pigment cells left the archenteron and migrated into the blastocoele. Unlike pigment cells in typical sea urchins, however, they did not enter the ectoderm, and stayed in the blastocoele even at the pluteus stage. It is of interest that the majority of pigment cells were distributed in the vicinity of the larval skeleton. Aphidicolin treatment revealed that eight blastomeres were specific to pigment cell lineage after the eighth cleavage, one cell cycle earlier than that in well-known sea urchins. The pigment founder cells divided twice, and the number of pigment cells was around 32 at the pluteus stage. It was also found that the differentiation of pigment cells was blocked with Ni2+, whereas the treatment was effective only during the first division cycle of the founder cells.  相似文献   

5.
The distal region of the S. purpuratus actin CyIIIb gene, between −400 and −1400 nucleotides, contains at least three distinct cis-acting elements (C1R, C1L and E1) which are necessary for correct expression of fusion reporter genes in transgenic sea urchin embryos. The contribution of these elements in the temporal and spatial regulation of the gene was analyzed by single and double site-directed mutagenesis in fusion constructs which carry the bacterial chloramphenicol acetyl transferase (CAT) gene as a reporter. Following microinjection of the transgenes in sea urchin embryos, the activity of the mutants was compared to the wild type in time and space by measuring CAT activity at the blastula and pluteus embryonic stages and by in situ hybridization to the CAT mRNA at pluteus stage. Our results indicate that E1 involved in the temporal regulation of CyIIIb and that all three elements are necessary and sufficient to confer aboral (dorsal) ectoderm specificity to the proximal promoter. This is achieved by suppressing the promoter's activity in all other tissues by the cooperative interaction of the cis-acting elements. The C1R element, binding site of the nuclear receptors SpCOUP-TF and SpSHR2, is by itself sufficient to restrict expression in the ectoderm, whereas the aboral ectoderm restricted expression requires in addition the presence of both C1L adn E1. It is therefore evident, that the actin CyIIIb gene is exclusively expressed in the aboral ectoderm by a combinatorial repression in all other cell lineages of the developing embryo.  相似文献   

6.
Primary mesenchyme cells (PMC), the skeletogenic cells derived from the micromeres of the sea urchin embryo, are involved in the differentiation of the gut. When PMC were deleted from the mesenchyme blastula, both formation of the constrictions in the gut and expression of endoderm-specific alkaline phosphatase were significantly delayed. Therefore, the correct timing of gut differentiation depends on the existence of PMC, probably via a type of promotive signal. To date, the only role of PMC in other tissue differentiation has been a suppressive signal for the conversion of secondary mesenchyme cells (SMC) into skeletogenic cells. The present experiments using PMC ablation and transplantation showed that both signaling processes occurred in the same short period during gastrulation, but the embryos kept their competence for gut differentiation until a later stage. Further investigations indicated that conversion of SMC did not cause delay in gut differentiation and that SMC did not mediate the PMC signal to the endoderm. Therefore, the effect of PMC on gut differentiation could be a new role that is independent of the suppressive effect for SMC conversion.  相似文献   

7.
The entry of beta-catenin into vegetal cell nuclei beginning at the 16-cell stage is one of the earliest known molecular asymmetries seen along the animal-vegetal axis in the sea urchin embryo. Nuclear beta-catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear beta-catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16-cell-stage micromeres in a nuclear beta-catenin-dependent manner, and its expression remains restricted to the micromeres until the 60-cell stage. At the late 60-cell stage nuclear beta-catenin-dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16-60-cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm-inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8-morpholino embryos also did not form endoderm, or secondary mesenchyme-derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo.  相似文献   

8.
9.
10.
11.
12.
When proteins isolated from spicules of Strongylocentrotus purpuratus embryos were examined by western blot analysis, a major protein of approximately 43 kDa was observed to react with the monoclonal antibody, mAb 1223. Previous studies have established that this antibody recognizes an asparagine-linked, anionic carbohydrate epitope on the cell surface glycoprotein, msp130. This protein has been shown to be specifically associated with the primary mesenchyme cells involved in assembly of the spicule. Moreover, several lines of evidence have implicated the carbohydrate epitope in Ca2+ deposition into the growing spicule. The 43 kDa, spicule matrix protein detected with mAb 1223 also reacted with a polyclonal antibody to a known spicule matrix protein, SM30. Further characterization experiments, including deglycosylation using PNGaseF, two-dimensional electrophoresis, and immunoprecipitation, verified that the 43 kDa spicule matrix protein had a pl of approximately 4.0, contained the carbohydrate epitope recognized by monoclonal antibody mAb 1223 and reacted with anti-SM30. Electron microscopy confirmed the presence of proteins within the demineralized spicule that reacted with mAb 1223 and anti-SM30. We conclude that the spicule matrix protein, SM30, is a glycoprotein containing carbohydrate chains similar or identical to those on the primary mesenchyme cell membrane glycoprotein, msp130.  相似文献   

13.
The purification, biochemical characterization and functional features of a novel extracellular matrix protein are described. This protein is a component of the basal lamina found in embryos from the sea urchin species Paracentrotus lividus and Hemicentrotus pulcherrimus . The protein has been named PI-200 K or Hp-200 K, respectively, because of the species from which it was isolated and its apparent molecular weight in SDS-PAGE under reducing conditions. It has been purified from unfertilized eggs where it is found packed within cytoplasmic granules, and has different binding affinities to type I collagen and heparin, as assessed by affinity chromatography columns. By indirect immunofluorescence experiments it was shown that, upon fertilization, the protein becomes extracellular, polarized at the basal surface of ectoderm cells, and on the surface of primary mesenchyme cells at the blastula and gastrula stages. The protein serves as an adhesive substrate, as shown by an in vitro binding assay where cells dissociated from blastula embryos were settled on 200K protein-coated substrates. To examine the involvement of the protein in morphogenesis of sea urchin embryo, early blastula embryos were microinjected with anti-200K Fab fragments and further development was followed. When control embryos reached the pluteus stage, microinjected embryos showed severe abnormalities in arms and skeleton elongation and patterning. On the basis of current results, it was proposed that 200K protein is involved in the regulation of sea urchin embryo skeletogenesis.  相似文献   

14.
Genes of the sea urchin embryo: An annotated list as of December 1994   总被引:1,自引:1,他引:0  
The main literature regarding gene structure and expression in sea urchin embryos is schematically reported and briefly commented upon. Although the subject has expanded particularly over the last 10 years, to which the review mostly refers, some historical reference is also given. More space is reserved to the regulation of the synthesis of histones and cytoskeletal actins, where the attention of various authors has been especially present; the regulation of such a synthesis is described both at a territorial level and a temporal level during the sea urchin development.  相似文献   

15.
We have partially purified and characterized an 87 kDa gelatinase activity expressed in later stage sea urchin embryos. Cleavage activity was specific for gelatin and no cleavage of sea urchin peristome type I collagen, bovine serum albumin or casein was detected. Magnesium and Zn2+ inhibited the gelatinase and Ca2+ protected against inhibition. Ethylenediamine tetracetic acid, ethylenebisoxyethylenenitriol tetraacetic acid and 1,10-phenanthroline were inhibitory, suggesting that the gelatinase is a Ca2+- and Zn2+-dependent metalloproteinase. No inhibition was detected with serine or cysteine protease inhibitors and the vertebrate matrix metalloproteinase (MMP) inhibitor, Batimastat, was also ineffective. The vertebrate MMP activator p-aminophenylmercuric acetate was without effect. These results allow us to identify both similarities and differences between echinoderm and vertebrate gelatinases. J. Cell. Biochem. 66: 337–345, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Spicule matrix proteins are the products of primary mesenchyme cells, and are present in calcite spicules of the sea urchin embryo. To study their possible roles in skeletal morphogenesis, monoclonal antibodies against SM50, SM30 and another spicule matrix protein (29 kDa) were obtained. The distribution of these proteins in the embryo skeleton was observed by immunofluorescent staining. In addition, their distribution inside the spicules was examined by a 'spicule blot' procedure, direct immunoblotting of proteins embedded in crystallized spicules. Our observations showed that SM50 and 29 kDa proteins were enriched both outside and inside the triradiate spicules of the gastrulae, and also existed in the corresponding portions of growing spicules in later embryos and micromere cultures. The straight extensions of the triradiate spicules and thickened portions of body rods in pluteus spicules were also rich in these proteins. The SM30 protein was only faintly detected along the surface of spicules. By examination using the spicule blot procedure, however, SM30 was clearly detectable inside the body rods and postoral rods. These results indicate that SM50 and 29 kDa proteins are concentrated in radially growing portions of the spicules (normal to the c-axis of calcite), while SM30 protein is in the longitudinally growing portions (parallel to the c-axis). Such differential distribution suggests the involvement of these proteins in calcite growth during the formation of three-dimensionally branched spicules.  相似文献   

17.
18.
19.
The most animal part of the ciliated band of sea urchin larvae, the animal plate, is a specialized region in which elongated cells form long and non-beating cilia. To learn how this region is specified, animal halves were isolated from the early cleavage to pregastrulation stages. As is well known, the animal half that is isolated at the eight-cell stage develops into a 'dauerblastula', which forms long and non-beating cilia all around the surface. The region with long cilia, however, became restricted toward the animal pole when separation was delayed. If separated before primary mesenchyme ingression, even a small animal-pole-side fragment formed a normal-sized animal plate. Thus, the prospective animal plate region is gradually restricted by some signal from the vegetal hemisphere, and the specification process terminates before the mesenchyme blastula stage. It was also known that a normal-sized animal plate was formed in micromere-less embryos, indicating that the signal does not depend on micromeres or their descendants. Further, the animal-pole-side fragments were isolated from embryos in which the third cleavage plane was shifted toward the vegetal pole. They formed a normal-sized animal plate, containing more than 75% of the egg volume from the animal pole. This indicates that the egg cytoplasm delivered to veg1 -lineage blastomeres plays an important role in the animal plate specification. Interestingly, the an1-less embryo formed long and non-beating cilia at its top region, but thickening did not occur. The cytoplasm near the animal pole might contain some factors necessary for the animal plate to become thick.  相似文献   

20.
We have analyzed a gene, designated VEB4 , that is expressed transiently in very early blastulae of the sea urchin, Strongylocentrotus purpuratus . Sequence analysis of the complete open reading frame shows that VEB4 encodes an unusual, highly charged protein with a pl of 9.55. We show here that VEB4 mRNA accumulate in a spatial pattern that is indistinguishable from that of two other recently described genes encoding metallo-endoproteases, SpAN , related to astacin and SpHE , the hatching enzyme (Reynolds et al . 1992). VEB4 and other members of this gene set encode the earliest strictly zygotic gene products that have been identified. The asymmetric accumulation of VEB4 mRNA in non-vegetal blastomeres of the 16 cell embryo and their descendants reflects the animal-vegetal maternal developmental axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号