首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SOCS3 inhibits insulin signaling in porcine primary adipocytes   总被引:1,自引:0,他引:1  
Insulin resistance is a major player in the pathogenesis of type II diabetes, the metabolic syndrome, and obesity. SOCS3 plays an important role in the development of insulin resistance. To investigate the role of SOCS3 in porcine adipocyte insulin signaling, we first detected the effect of insulin on SOCS3 mRNA and protein expression in porcine primary adipocytes by real-time RT-PCR and Western blotting. Then, we constructed a recombinant adenovirus encoding SOCS3 gene (Ad-SOCS3) which was used to infect differentiated porcine primary adipocytes for 3 days. The expression and phosphorylation of main insulin signaling components were detected by Western blotting. The results showed that 100 nM insulin could induce SOCS3 mRNA expression but not protein expression, and overexpression of SOCS3 decreased IRS1 protein level, insulin-stimulated IRS1 tyrosine phosphorylation, PI3K activation, and Akt phosphorylation, but increased IRS1 serine phosphorylation in porcine primary adipocytes. These results indicate that SOCS3 is an important negative regulator of insulin signaling in porcine adipocytes. Thus, SOCS3 may be a novel therapeutic target for the prevention or treatment of insulin resistance and type II diabetes.  相似文献   

2.
Genistein, an isoflavone putative tyrosine kinase inhibitor, was used to investigate the coupling of insulin receptor tyrosine kinase activation to four metabolic effects of insulin in the isolated rat adipocyte. Genistein inhibited insulin-stimulated glucose oxidation in a concentration-dependent manner with an ID50 of 25 micrograms/ml and complete inhibition at 100 micrograms/ml. Genistein also prevented insulin's (10(-9) M) inhibition of isoproterenol-stimulated lipolysis with an ID50 of 15 micrograms/ml and a complete effect at 50 micrograms/ml. The effect of genistein (25 micrograms/ml) was not reversed by supraphysiological (10(-7) M) insulin levels. In contrast, genistein up to 100 micrograms/ml had no effect on insulin's (10(-9) M) stimulation of either pyruvate dehydrogenase or glycogen synthase activity. We determined whether genistein influenced insulin receptor beta-subunit autophosphorylation or tyrosine kinase substrate phosphorylation either in vivo or in vitro by anti-phosphotyrosine immunoblotting. Genistein at 100 micrograms/ml did not inhibit insulin's (10(-7) M) stimulation of insulin receptor tyrosine autophosphorylation or tyrosine phosphorylation of the cellular substrates pp185 and pp60. Also, genistein did not prevent insulin-stimulated autophosphorylation of partially purified human insulin receptors from NIH 3T3/HIR 3.5 cells or the phosphorylation of histones by the activated receptor tyrosine kinase. In control experiments using either NIH 3T3 fibroblasts or partially purified membranes from these cells, genistein did inhibit platelet-derived growth factor's stimulation of its receptor autophosphorylation. These findings indicate the following: (a) Genistein can inhibit certain responses to insulin without blocking insulin's stimulation of its receptor tyrosine autophosphorylation or of the receptor kinase substrate tyrosine phosphorylation. (b) In adipocytes genistein must block the stimulation of glucose oxidation and the antilipolytic effects of insulin at site(s) downstream from the insulin receptor tyrosine kinase. (c) The inhibitory effects of genistein on hormonal signal transduction cannot necessarily be attributed to inhibition of tyrosine kinase activity, unless specifically demonstrated.  相似文献   

3.
Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens.  相似文献   

4.
The mitochondrial enzyme 1-acyl-sn-glycerol-3-phosphate acyltransferase (mtGPAT1) catalyzes a rate-limiting step in triacylglycerol and glycerophospholipid biosynthesis, which can be modulated by protein kinases in cell free analyses. We report that treatment of primary rat adipocytes with insulin acutely affects the activity of mtGPAT1 by increasing VMAX and KM for the substrates glycerol-3-phosphate and palmitoyl-CoA. Proteolytic cleavage of isolated mitochondrial membranes and mass spectrometric peptide sequencing identify in vivo phosphorylation of serine 632 and serine 639 in mtGPAT1. These phosphorylation sites correspond to casein kinase-2 consensus sequences and are highly conserved in chordate animal, but not fly, fungal or plant, mtGPAT1.  相似文献   

5.
Treatment of primary cultured adipocytes with 20 mM glucose resulted in a progressive increase in specific 125I-insulin binding that began almost immediately (no lag period) and culminated in a 60% increase by 24 h. This effect was dose-dependent (glucose ED50 of 4.6 mM) and mediated by an increase in insulin receptor affinity. Moreover, it appears that glucose modulates insulin receptor affinity through de novo protein synthesis rather than through covalent modification of receptors, since cycloheximide selectively inhibited the glucose-induced increase in insulin binding capacity (ED50 of 360 ng/ml) and restored receptor affinity to control values. Importantly, insulin sensitivity of the glucose transport system was increased by glucose treatment (63%) to an extent comparable with the enhancement in receptor affinity, thus indicating a functional coupling between insulin binding and insulin action. When the long term effects of insulin were assessed (24 h), we found that insulin treatment reduced 125I-insulin binding by greater than 60% by down-regulating the number of cell surface receptors in a dose-dependent manner (insulin ED50 of 7.4 ng/ml). On the basis of these studies, we conclude that 1) insulin binding is subject to dual regulation (glucose controls insulin action by enhancing receptor affinity, whereas insulin controls the number of cell surface receptors); and 2) glucose appears to modulate insulin receptor affinity through the rapid biosynthesis of an affinity regulatory protein.  相似文献   

6.
Summary The binding affinity of sulphated insulin compared with unmodified, neutral insulin has been reported to be approximately four times lower in human and rat adipocytes but over twenty times lower in rat hepatocytes. In the present study the biological action of sulphated insulin was assesed in rat hepatocytes and human and rat adipocytes. To achieve half-maximal stimulation of fatty acid synthesis in rat hepatocytes about twenty one times higher concentrations of sulphated than neutral insulin were required (15.07±5.50 vs 0.71±0.34 nmol/l), this ratio being similar to the ratio of binding affinity in rat hepatocytes. In human adipocytes, half-maximal stimulation of initial rates of glucose uptake was observed at 11.6±5.1 vs 2.9±1.3 pmol/l for sulphated and neutral insulin respectively, and half-maximal inhibition of lipolysis at 31.0±13.5 vs 7.3+2.5 pmol/I respectively. These data are consistent with the four-fold lower binding affinity of sulphated insulin to human adipocytes. However, in rat adipocytes the biological potency of sulphated insulin was found to be much lower than anticipated from the binding data, half-maximal stimulation of initial rates of glucose uptake being observed at 757±299 vs 35±13 pmol/l respectively and half-maximal inhibition of lipolysis at 35.9±12.1 vs 1.5±0.5 pmol/l respectively. Thus, in rat adipocytes, approximately 22 times the concentration of sulphated insulin was required to achieve equivalent biological effect. A discrepancy between binding affinity and biological action with respect to sulphated insulin was identified in rat adipocytes but not human adipocytes nor rat hepatocytes suggesting differences in the binding-action linkage in these cells.  相似文献   

7.
Insulin regulates the activity of both protein kinases and phosphatases. Little is known concerning the subcellular effects of insulin on phosphatase activity and how it is affected by insulin resistance. The purpose of this study was to determine insulin-stimulated subcellular changes in phosphatase activity and how they are affected by insulin resistance. We used an in vitro fatty acid (palmitate) induced insulin resistance model, differential centrifugation to fractionate rat adipocytes, and a malachite green phosphatase assay using peptide substrates to measure enzyme activity. Overall, insulin alone had no effect on adipocyte tyrosine phosphatase activity; however, subcellularly, insulin increased plasma membrane adipocyte tyrosine phosphatase activity 78 +/- 26% (n = 4, P < 0.007), and decreased high-density microsome adipocyte tyrosine phosphatase activity 42 +/- 13% (n = 4, P < 0.005). Although insulin resistance induced specific changes in basal tyrosine phosphatase activity, insulin-stimulated changes were not significantly altered by insulin resistance. Insulin-stimulated overall serine/threonine phosphatase activity by 16 +/- 5% (n = 4, P < 0.005), which was blocked in insulin resistance. Subcellularly, insulin increased plasma membrane and crude nuclear fraction serine/threonine phosphatase activities by 59 +/- 19% (n = 4, P < 0. 005) and 21 +/- 7% (n = 4, P < 0.007), respectively. This increase in plasma membrane fractions was inhibited 23 +/- 7% (n = 4, P < 0. 05) by palmitate. Furthermore, insulin increased cytosolic protein phosphatase-1 (PP-1) activity 160 +/- 50% (n = 3, P < 0.015), and palmitate did not significantly reduce this activity. However, palmitate did reduce insulin-treated low-density microsome protein phosphatase-1 activity by 28 +/- 6% (n = 3, P < 0.04). Insulin completely inhibited protein phosphatase-2A activity in the cytosol and increased crude nuclear fraction protein phosphatase-2A activity 70 +/- 29% (n = 3, P < 0.038). Thus, the major effects of insulin on phosphatase activity in adipocytes are to increase plasma membrane tyrosine and serine/threonine phosphatase, crude nuclear fraction protein phosphatase-2A, and cytosolic protein phosphatase-1 activities, while inhibiting cytosolic protein phosphatase-2A. Insulin resistance was characterized by reduced insulin-stimulated serine/threonine phosphatase activity in the plasma membrane and low-density microsomes. Specific changes in phosphatase activity may be related to the development of insulin resistance.  相似文献   

8.
Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.  相似文献   

9.
We have studied the effect of insulin concentration on the kinetics of insulin internalization and efflux in isolated rat adipocytes. To determine internalization rates adipocytes were incubated with 125I-insulin at 37 degrees C; and at frequent, early time points surface-bound and intracellular insulin were quantitated. Surface-bound and intracellular insulin were discriminated by the sensitivity of the former to rapid dissociation by a pH 3.0 buffer at 4 degrees C. From this data the endocytotic (internalization) rate constant (ke) was calculated for six insulin concentrations ranging from 0.3 to 100 ng/ml. Ke was found to decrease in an insulin concentration-dependent manner (P less than .001). Thus, values for ke were 0.121 +/- 0.006 min-1 versus 0.074 +/- 0.011 min-1 at 0.3 ng/ml and 100 ng/ml, respectively. The decrease in ke did not parallel insulin concentration-dependent changes in insulin receptor affinity indicating it was not the result of an inability of low affinity receptors to be internalized. The kinetics of insulin efflux were determined by loading various concentrations of 125I-insulin into the adipocyte interior, washing away surface-bound and extracellular insulin, and then monitoring the subsequent efflux of pre-loaded insulin into medium that contained the same concentration of insulin used in the loading step. The overall rate of efflux was independent of insulin concentration. In summary, these results show that at high insulin concentrations the efficiency of insulin internalization is impaired. In contrast, the rate of insulin efflux is unaffected.  相似文献   

10.
Adipocytes are insulin-sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type 2 diabetes, cardiovascular disease, and metabolic syndrome. The use of botanicals in the treatment of metabolic diseases is an emerging area of research. In previous studies, we screened over 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We identified St. John's Wort (SJW) extracts as inhibitors of adipogenesis of 3T3-L1 cells and demonstrated that these extracts also inhibited insulin-sensitive glucose uptake in mature fat cells. In these follow-up studies we have further characterized the effects of SJW on insulin action in both murine and human fat cells. We have shown that SJW also attenuates insulin-sensitive glucose uptake in human adipocytes. Moreover, SJW inhibits IRS-1 tyrosine phosphorylation in both murine and human fat cells. Botanical extracts are complex mixtures. Many bioactive compounds have been identified in SJW, including hypericin (HI) and hyperforin (HF). We have examined the ability of HI and HF, purified from SJW, to modulate adipocyte development and insulin action in mature adipocytes. Our novel studies indicate that the profound effects of SJW on adipogenesis, IRS-1 activation, and insulin-stimulated glucose uptake are not mediated by HI and/or HF. Nonetheless, we propose that extracts of SJW may contribute to adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.  相似文献   

11.
Treatment of primary cultured adipocytes with 50 ng/ml insulin and 20 mM glucose for 0-6 h resulted in a loss of maximal insulin responsiveness (MIR) which was immediate (no lag period), rapid (t1/2 of 3 h), linear, and extensive (80% of that seen at 24 h), whereas loss of insulin sensitivity from 0-24 h was slow (t1/2 = 8 h), extensive (insulin ED50 of 0.3 and 1.45 ng/ml at 2 and 24 h, respectively), and was preceded by an initial 2-h lag. Recovery of MIR and insulin sensitivity was assessed by inducing desensitization for various times from 2-24 h, removing insulin and glucose, and then measuring MIR and insulin sensitivity over a subsequent 1-6-h period. After 2 h, recovery of MIR in desensitized cells was rapid (251 pmol of glucose/3 min/h), whereas after 24 h, recovery was much slower (35 pmol/3 min/h). In contrast, the opposite trend was seen for recovery of insulin sensitivity: at early times recovery of insulin sensitivity was slow (0.05 ng/ml/h) but was rapid after 24 h (0.12 ng/ml/h). Thus, it appears that MIR and insulin sensitivity can be independently regulated since recovery rates for MIR and insulin sensitivity diverged with the progression of insulin resistance. When the effects of insulin and glucose on recovery were examined, we found that insulin alone was unable to block recovery of MIR or insulin sensitivity. Glucose alone, however, was effective in preventing recovery of insulin sensitivity but not recovery of MIR. In the presence of 20 mM glucose, low doses of insulin (treatment EC50 = 0.22-0.46 ng/ml) effectively prevented recovery of both MIR and insulin sensitivity. De novo protein synthesis apparently is not involved in the development of insulin resistance or the reversal of desensitization since inhibition of protein synthesis by cycloheximide had no effect on the loss of MIR and insulin sensitivity or recovery.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
To investigate the mechanisms by which amiloride inhibits insulin action rat adipocytes were treated with insulin and with amiloride added before or after energy depleting the cells with 2 mM KCN. Amiloride decreased the insulin response on 3-0-methylglucose transport, IGF-II- and insulin binding in both intact and energy depleted cells. In contrast, the sensitivity to insulin was inhibited by amiloride only when it was added before KCN. The effect of amiloride on insulin sensitivity was probably exerted through the impaired activation of the insulin receptor tyrosine kinase and the decreased insulin binding. However, insulin responsiveness was probably impaired through a direct effect on the plasma membrane proteins. In contrast to a recent report with pituitary cells, amiloride did not affect the activation of the inhibitory GTP-binding protein (Gi) in rat adipocytes.  相似文献   

13.
Adipose tissue is both an energy storage depot and an endocrine organ. The impaired regulation of the secreted proteins of adipose tissue, known as adipocytokines, observed during obesity contributes to the onset of whole-body insulin resistance and the pathobiology of type 2 diabetes mellitus (T2DM). In addition, the global elevation of the intracellular glycosylation of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) via either genetic or pharmacological methods is sufficient to induce insulin resistance in both cultured cells and animal models. The elevation of global O-GlcNAc levels is associated with the altered expression of many adipocytokines. We have previously characterized the rodent adipocyte secretome during insulin sensitive and insulin resistant conditions. Here, we characterize and quantify the secretome and glycome of primary human adipocytes during insulin responsive and insulin resistant conditions generated by the classical method of hyperglycemia and hyperinsulinemia or by the pharmacological manipulation of O-GlcNAc levels. Using a proteomic approach, we identify 190 secreted proteins and report a total of 20 up-regulated and 6 down-regulated proteins that are detected in both insulin resistant conditions. Moreover, we apply glycomic techniques to examine (1) the sites of N-glycosylation on secreted proteins, (2) the structures of complex N- and O-glycans, and (3) the relative abundance of complex N- and O-glycans structures in insulin responsive and insulin resistant conditions. We identify 91 N-glycosylation sites derived from 51 secreted proteins, as well as 155 and 29 released N- and O-glycans respectively. We go on to quantify many of the N- and O-glycan structures between insulin responsive and insulin resistance conditions demonstrating no significant changes in complex glycosylation in the time frame for the induction of insulin resistance. Thus, our data support that the O-GlcNAc modification is involved in the regulation of adipocytokine secretion upon the induction of insulin resistance in human adipocytes.  相似文献   

14.
A Shisheva  Y Shechter 《Biochemistry》1992,31(34):8059-8063
We report here that quercetin, a naturally occurring bioflavonoid, is an effective blocker of insulin receptor tyrosine kinase-catalyzed phosphorylation of exogenous substrate. The ID50 was estimated to be 2 +/- 0.2 microM in cell-free experiments, using a partially purified insulin receptor and a random copolymer of glutamic acid and tyrosine as a substrate. Insulin-stimulated autophosphorylation of the receptor itself was not blocked by quercetin (up to 500 microM). In intact rat adipocytes, quercetin inhibited insulin-stimulating effects on glucose transport, oxidation, and its incorporation into lipids. Inhibition of lipogenesis (50%) occurred at 47 +/- 4 microM, whereas full inhibition was evident at 110 +/- 10 microM quercetin. In contrast, the effect of insulin in inhibiting lipolysis remained unaltered in quercetin-treated adipocytes. The inhibitor was devoid of general adverse cell affects. Basal activities and the ability of lipolytic agents to stimulate lipolysis were not affected. Inhibition by quercetin enabled us to evaluate which insulinomimetic agents are dependent on tyrosine phosphorylation of endogenous substrates for stimulating glucose metabolism. Quercetin blocked lipogenesis mediated by insulin, wheat germ agglutinin, and concanavalin A. The lipogenic effect of Zn2+ and Mn2+ was partially blocked, whereas that of vanadate was not affected at all.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Adipocytes are insulin sensitive cells that play a major role in energy homeostasis. Obesity is the primary disease of fat cells and a major risk factor for the development of Type II diabetes, cardiovascular disease, and metabolic syndrome. Obesity and its related disorders result in dysregulation of the mechanisms that control adipocyte gene expression and function. To identify potential novel therapeutic modulators of adipocytes, we screened 425 botanical extracts for their ability to modulate adipogenesis and insulin sensitivity. We observed that less than 2% of the extracts had substantial effects on adipocyte differentiation of 3T3-L1 cells. Two of the botanical extracts that inhibited adipogenesis were extracts from St. John’s Wort (SJW). Our studies revealed that leaf and flower, but not root, extracts isolated from SJW inhibited adipogenesis as judged by examining PPARγ and adiponectin levels. We also examined the effects of these SJW extracts on insulin sensitivity in mature 3T3-L1 adipocytes. Both leaf and flower extracts isolated from SJW substantially inhibited insulin sensitive glucose uptake. The specificity of the observed effects was demonstrated by showing that treatment with SJW flower extract resulted in a time and dose dependent inhibition of insulin stimulated glucose uptake. SJW is commonly used in the treatment of depression. However, our studies have revealed that SJW may have a negative impact on adipocyte related diseases by limiting differentiation of preadipocytes and significantly inducing insulin resistance in mature fat cells.  相似文献   

16.
We have previously shown in primary cultured rat adipocytes that insulin acts at receptor and multiple postreceptor sites to decrease insulin's subsequent ability to stimulate glucose transport. To examine whether D-glucose can regulate glucose transport activity and whether it has a role in insulin-induced insulin resistance, we cultured cells for 24 h in the absence and presence of various glucose and insulin concentrations. After washing cells and allowing the glucose transport system to deactivate, we measured basal and maximally insulin-stimulated 2-deoxyglucose uptake rates (37 degrees C) and cell surface insulin binding (16 degrees C). Alone, incubation with D-glucose had no effect on basal or maximal glucose transport activity, and incubation with insulin, in the absence of glucose, decreased maximal (but not basal) glucose transport rates only 18% at the highest preincubation concentration (50 ng/ml). However, in combination, D-glucose (1-20 mM) markedly enhanced the long-term ability of insulin (1-50 ng/ml) to decrease glucose transport rates in a dose-responsive manner. For example, at 50 ng/ml preincubation insulin concentration, the maximal glucose transport rate fell from 18 to 63%, and the basal uptake rate fell by 89%, as the preincubation D-glucose level was increased from 0 to 20 mM. Moreover, D-glucose more effectively promoted decreases in basal glucose uptake (Ki = 2.2 +/- 0.4 mM) compared with maximal transport rates (Ki = 4.1 +/- 0.4 mM) at all preincubation insulin concentrations (1-50 ng/ml). Similar results were obtained when initial rates of 3-O-methylglucose uptake were used to measure glucose transport. D-glucose, in contrast, did not influence insulin-induced receptor loss. In other studies, D-mannose and D-glucosamine could substitute for D-glucose to promote the insulin-induced changes in glucose transport, but other substrates such as L-glucose, L-arabinase, D-fructose, pyruvate, and maltose were without effect. Also, non-metabolized substrates which competitively inhibit D-glucose uptake (3-O-methylglucose, cytochalasin B) blocked the D-glucose plus insulin effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

18.
19.
20.
Using selected conditions, the appropriate collagenase, albumin and cell treatment, a preparation of isolated adipocytes was developed with no extracellular insulin degrading activity. Cell mediated insulin degradation rates were 0.68%±0.05%/100 000 cell/h using trichloracetic acid precipitability as a measure. Chloroquine (CQ) increased cell-associated radioactivity and decreased degradation while dansylcadaverine (DC), PCMBS and bacitracin (BAC) decreased degradation with no effect on binding. Extraction and chromatography of the cell-associated radioactivity showed 3 peaks, a large molecular weight peak, a small molecular weight peak and an insulin-sized peak. CQ, DC and BAC all decreased the small molecular weight peak while CQ and DC also increased the peak of large molecular weight radioactivity. Cell mediated insulin degradation in the presence of combinations of inhibitors suggested two pathways in adipocytes, one affected by inhibitors of the insulin degrading enzyme (IDE) (bacitracin and PCMBS) and the other altered by cell processing inhibitors (DC, CQ and phenylarsenoxide). Chloroquine altered the pattern of the insulin-sized cell-associated HPLC assayed degradation products, further supporting two pathways of degradation; one a chloroquine-sensitive and one a chloroquine-insensitive pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号