首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Epithelial cells and surrounding free cells in the choroid plexus were examined cytochemically using filipin to clarify the distribution pattern of cholesterol within plasma membranes. The apical and basal membranes of the choroid epithelial cell are less susceptible to filipin than the lateral epithelial membrane and plasma membranes of adjacent mesenchymal cells such as macrophages and fibroblasts. Apical and basal domains of the epithelial membranes, which are relatively resistant to action of filipin, appear to have a slightly lower cholesterol content. We suggest that the apical and basal membranes may possess a unique membrane fluidity or stability that differs from that of the lateral epithelial, macrophage or fibroblast membranes.  相似文献   

2.
The biogenesis of plasmalemma glycoproteins of rat small-intestinal villus cells was studied by following the incorporation of l-[1,5,6-(3)H]fucose, given intraperitoneally with and without chase, into Golgi, lateral basal and microvillus membranes. Each membrane fraction showed distinct kinetics of incorporation of labelled fucose and was differently affected by the chase, which produced a much greater decrease in incorporation of label into Golgi and microvillus than into lateral basal membranes. The kinetic data suggest a redistribution of newly synthesized glycoproteins from the site of fucosylation, the Golgi complex, directly into both lateral basal and microvillus membranes. The observed biphasic pattern of label incorporation into the microvillus membrane fraction may be evidence for a second indirect route of incorporation. The selective effect of the chase suggests the presence of two different pools of radioactive fucose in the Golgi complex that differ in (1) their accessibility to dilution with non-radioactive fucose, and (2) their utilization for the biosynthesis of membrane glycoproteins subsequently destined for either the microvillus or the lateral basal parts of the plasmalemma. The radioactively labelled glycoproteins of the different membrane fractions were separated by sodium dodecyl sulphate/polyacrylamide-slab-gel electrophoresis and identified by fluorography. The patterns of labelled glycoproteins in Golgi and lateral basal membranes were identical at all times. At least 14 bands could be identified shortly after radioactive-fucose injection. Most seemed to disappear at later times, although one of them, which was never observed in microvillus membranes, increased in relative intensity. All but two of the labelled glycoproteins present in the microvillus membrane corresponded to those observed in Golgi and lateral basal membranes shortly after fucose injection. The patterns of labelled glycoproteins in all membrane fractions were little affected by the chase. These data support a flow concept for the insertion of most surface-membrane glycoproteins of the intestinal villus cells.  相似文献   

3.
Summary During pseudopregnancy in the rabbit some uterine epithelial cells undergo conversion into symplasmata. This event serves as a model for studies of membrane apposition, fusion and fission of the lateral membranes with the use of different ultrastructural techniques. Apposition of lateral membranes occurs by means of proliferation of the tight-junctional belt and macular tight junctions. Membrane fusion is characterized in freeze-fracture replicas by continuously running fracture planes between neighboring membrane leaflets of epithelial cells, in general without reorganization of the particles. It is suggested that the reorganization of particles as well as the blebs or vesicles of smooth membranes, which are occasionally observed, may be artefacts. Membrane fission occurs simultaneously with fusion resulting in irregularly shaped membrane holes on freeze-fracture replicas. These events are rarely seen in thin sections. Staining with tannic acid reveals that only the layers of the plasma membrane are accessible to this agent. The fusion-fission process starts in the lower region of the lateral membranes, whereas the luminal portion with the broad tight-junctional belt remains intact.Dedicated to Professor Dr. med. Dr. phil. Karl-Heinrich Knese, Stuttgart-Hohenheim, in honour of his 70th birthday  相似文献   

4.
ADP-ribosylation of membrane proteins from rabbit small intestinal epithelium was investigated following incubation of membranes with [32P]NAD and cholera toxin. Cholera toxin catalyzes incorporation of 32P into three proteins of 40 kDA, 45 kDa and 47 kDa located in the brush-border membrane. In contrast, basal lateral membranes do not contain any protein which becomes labeled in a toxin-dependent manner when incubated with cholera toxin and [32P]NAD. The modification of membrane proteins from brush border occurred in spite of the virtual absence in these membranes of adenylate cyclase activatable either by cholera toxin, vasoactive intestinal peptide (VIP) or fluoride. The three agents activated adenylate cyclase when crude plasma membrane were used. Cholera toxin activated fivefold at 10 micrograms/ml. Vasoactive intestinal peptide activated at concentrations from 10-300 nM, the maximal stimulation being sixfold. Fluoride activated 10-fold at 10 mM. When basal lateral membranes were assayed for adenylate cyclase it was found that, with respect to the crude membranes, the specific activity of fluoride-activated enzyme was 3.3-fold higher, VIP stimulated enzyme was maintained while cholera-toxin-stimulated enzyme showed half specific activity. Moreover, while fluoride stimulated ninefold and VIP stimulated fivefold, cholera toxin only stimulated twofold at the highest concentration. The results suggest that the activation by cholera toxin of adenylate cyclase located at the basal lateral membrane requires ADPribosylation of proteins in the brush border membrane.  相似文献   

5.
The rate of lateral diffusion of proteins over micron-scale distances in the plasma membrane (PM) of mammalian cells is much slower than in artificial membranes [1, 2]. Different models have been advanced to account for this discrepancy. They invoke either effects on the apparent viscosity of cell membranes through, for example, protein crowding [3, 4], or a role for cortical factors such as actin or spectrin filaments [1]. Here, we use photobleaching to test specific predictions of these models [5]. Neither loss of detectable cortical actin nor knockdown of spectrin expression has any effect on diffusion. Disruption of the PM by formation of ventral membrane sheets or permeabilization induces aggregation of membrane proteins, with a concomitant increase in rates of diffusion for the nonaggregated fraction. In addition, procedures that directly increase or decrease the total protein content of the PM in live cells cause reciprocal changes in lateral diffusion rates. Our data imply that slow diffusion over micron-scale distances is an intrinsic property of the membrane itself and that the density of proteins within the membrane is a significant parameter in determining rates of lateral diffusion.  相似文献   

6.
This report describes an immunoferritin labeling study of mouse H-2 histocompatibility antigens on epithelial cells dissociated from stomach, duodenum-jejunum, ileum, trachea, diestrus uterus, gall bladder, and vas deferens. Before cell dissociation, most of the organs were prefixed in periodate-lysine-paraformaldehyde to preserve the shape of the cells and to immobilize H-2 antigens in their native positions. Five kinds of epithelial cells expressed H-2 antigens on lateral and basal membranes but not on apical membranes. These were the lining cells of the upper intestine, ileum, gall gladder, uterus, and the tracheal brush cell. The antigens were continuously distributed on the lateral and basal membranes of these cells and appeared to be absent from the apical membranes, rather than masked by the fuzzy coat. On four other epithelial cell types H-2 antigens could not be detected. These were the lining cells of the vas deferens, parietal and chief cells from the stomach, and ciliated tracheal cells. It does not seem to be uncommon for normal nucleated cells to lack H-2 antigens. On fixed and labeled epithelial cells from the upper intestine the zonula occludens membranes were unlabeled, while the zonula adherens and desmosome membranes were labeled as densely as the remainder of the lateral membranes. The zonula occludens membrane thus constituted the boundary betewen the unlabeled apical membrane and the labeled lateral membrane of these cells. Intestinal epithelial cells dissociated without prefixation showed a patchy distribution of H-2 antigens on their lateral membranes after indirect labeling, indicating antigen mobility in this membrane. On the same unfixed dissociated cells the antigens were able to migrate from lateral to apical membranes, a movement which appears to be prevented in the intact epithelial layer by the occluding junction. The absence of H-2 antigens from apical membranes and their inability to migrate through an intact zonula occludens suggest that these molecules must reach the lateral membranes of epithelial cells by a pathway which is distinct from that followed by apical membrane components.  相似文献   

7.
Phase separations in phospholipd membranes.   总被引:16,自引:0,他引:16  
Phase diagrams representing lateral phase separations in the plane of lipid bilayer membranes have been determined for binary mixtures containing dielaidoylphosphatidylcholine together with dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, dioleoylphosphatidylcholine, and dipalmitoylphosphatidylethanolamine. The phase diagrams were deduced from observations of the temperature dependence of the paramagnetic resonance spectra of low concentrations of spin-labels incorporated in these bilayer membranes. In one case, the binary mixture of dipalmitoylphosphatidylethamine and dielaidoylphosphatidylcholine, evidence has been obtained for fluid-fluid immiscibility, in specified temperature and compoistion ranges. This immiscibility could give a lateral phase separation into fluid domains in the plane of the membrane, and/or a transverse phase separation into an asymmetrical bilayer membrane, and/or possibly disco ntinuous bilayer membranes of different composition. An asymmetrical bilayer membrane can be expected on theoretical grounds to form a nonplanar membrane.  相似文献   

8.
9.
Structural basis of membrane invagination by F-BAR domains   总被引:1,自引:0,他引:1  
BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.  相似文献   

10.
The distribution of the glycoprotein, mucin 1 (MUC1), was determined in lactating guinea-pig mammary tissue at the resolution of the electron microscope. MUC1 was detected on the apical plasma membrane of secretory epithelial cells, the surface of secreted milk-fat globules, the limiting membranes of secretory vesicles containing casein micelles and in small vesicles and tubules in the apical cytoplasm. Some of the small MUC1-containing vesicles were associated with the surfaces of secretory vesicles and fat droplets in the cytoplasm. MUC1 was detected in much lower amounts on basal and lateral plasma membranes. By quantitative immunocytochemistry, the ratio of MUC1 on apical membranes and milk-fat globules to that on secretory vesicle membranes was estimated to be 9.2:1 (density of colloidal gold particles/microm membrane length). The ratio of MUC1 on apical membranes compared with basal/lateral membranes was approximately 99:1. The data are consistent with a mechanism for milk-fat secretion in which lipid globules acquire an envelope of membrane from the apical surface and possibly from small vesicles containing MUC1 in the cytoplasm. During established lactation, secretory vesicle membrane does not appear to contribute substantially to the milk-fat globule membrane, or to give rise in toto to the apical plasma membrane.  相似文献   

11.
Ankyrin-G and βII-spectrin colocalize at sites of cell–cell contact in columnar epithelial cells and promote lateral membrane assembly. This study identifies two critical inputs from lipids that together provide a rationale for how ankyrin-G and βII-spectrin selectively localize to Madin-Darby canine kidney (MDCK) cell lateral membranes. We identify aspartate-histidine-histidine-cysteine 5/8 (DHHC5/8) as ankyrin-G palmitoyltransferases required for ankyrin-G lateral membrane localization and for assembly of lateral membranes. We also find that βII-spectrin functions as a coincidence detector that requires recognition of both ankyrin-G and phosphoinositide lipids for its lateral membrane localization. DHHC5/8 and βII-spectrin colocalize with ankyrin-G in micrometer-scale subdomains within the lateral membrane that are likely sites for palmitoylation of ankyrin-G. Loss of either DHHC5/8 or ankyrin-G–βII-spectrin interaction or βII-spectrin–phosphoinositide recognition through its pleckstrin homology domain all result in failure to build the lateral membrane. In summary, we identify a functional network connecting palmitoyltransferases DHHC5/8 with ankyrin-G, ankyrin-G with βII-spectrin, and βII-spectrin with phosphoinositides that is required for the columnar morphology of MDCK epithelial cells.  相似文献   

12.
Investigation of lipid lateral mobility in biological membranes and their artificial models provides information on membrane dynamics and structure; methods based on optical microscopy are very convenient for such investigations. We focus on fluorescence correlation spectroscopy (FCS), explain its principles and review its state of the art versions such as 2-focus, Z-scan or scanning FCS, which overcome most artefacts of standard FCS (especially those resulting from the need for an external calibration) making it a reliable and versatile method. FCS is also compared to single particle tracking and fluorescence photobleaching recovery and the applicability and the limitations of the methods are briefly reviewed. We discuss several key questions of lateral mobility investigation in planar lipid membranes, namely the influence which membrane and aqueous phase composition (ionic strength and sugar content), choice of a fluorescent tracer molecule, frictional coupling between the two membrane leaflets and between membrane and solid support (in the case of supported membranes) or presence of membrane inhomogeneities has on the lateral mobility of lipids. The recent FCS studies addressing those questions are reviewed and possible explanations of eventual discrepancies are mentioned.  相似文献   

13.
Pyrenedecanoic acid and pyrene lecithin are optical probes well suited to investigate lipid bilayer membranes. The method is based on the determination of the formation of excited dimers or excimers. The rate of excimer formation yields information on the dynamic molecular properties of artificial as well as of natural membranes. This article will review applications of the excimer-forming probes.Pyrene lipid probes are used to determine the coefficient of the lateral diffusion in fluid lipid membranes. Results in artificial membranes are comparable to the values obtained in erythrocyte membranes.Moreover, the excimer formation rate is a very sensitive measure of changes in membrane fluidity. Membrane fluidity is an important regulator of membrane functional proteins. For example, there is a correlation between membrane fluidity and enzyme activities of the adenylate cyclase system.The excimer formation technique is not restricted to the measurement of lateral mobility in membranes. It can also be used to determine the transversal mobility, that is, the lipid exchange between the lipid layers of one bilayer or between bilayers of different vesicles. Again, artificial as well as natural membranes can be investigated by this technique.Another important area of investigation in membrane research is the interaction between lipids and proteins. Lipids, in the presence of a protein, show a different dynamic behavior from free lipids. Because of changes in fluidity and a modified solubility of the pyrene probes within different membrane regions, our methods could also be applied to the examination of phase separation phenomena and to lipid-protein interactions.  相似文献   

14.
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity.  相似文献   

15.
Ankyrin-G polypeptides are required for restriction of voltage-gated sodium channels, L1 cell adhesion molecules, and beta IV spectrin to axon initial segments and are believed to couple the Na/K-ATPase to the spectrin-actin network at the lateral membrane in epithelial cells. We report here that depletion of 190-kDa ankyrin-G in human bronchial epithelial cells by small interfering RNA results in nearly complete loss of lateral plasma membrane in interphase cells, and also blocks de novo lateral membrane biogenesis following mitosis. Loss of the lateral membrane domain is accompanied by an expansion of apical and basal plasma membranes and preservation of apical-basal polarity. Expression of rat 190-kDa ankyrin-G, which is resistant to human small interfering RNA, prevents loss of the lateral membrane following depletion of human 190-kDa ankyrin-G. Human 220-kDa ankyrin-B, a closely related ankyrin isoform, is incapable of preserving the lateral membrane following 190-kDa ankyrin-G depletion. Moreover, analysis of rat 190-kDa ankyrin G/ankyrin B chimeras shows that all three domains of 190-kDa ankyrin-G are required for preservation of the lateral membrane. These results demonstrate that 190-kDa ankyrin-G plays a pleiotropic role in assembly of lateral membranes of bronchial epithelial cells.  相似文献   

16.
Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and mechanisms have been introduced over the years to account for certain phenomena and aspects of membrane organization and function. Recently, the different viewpoints - focusing on lipids vs. proteins or physical vs. molecular driving forces for membrane organization - are increasingly converging. Here we review the basic properties of biological membranes and the most common theories for lateral segregation of membrane components before discussing an emerging model of a self-organized, multi-domain membrane or 'patchwork membrane'.  相似文献   

17.
This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.  相似文献   

18.
This review will focus on computer modeling aimed at providing insights into the existence, structure, size, and thermodynamic stability of localized domains in membranes of heterogeneous composition. Modeling the lateral organization within a membrane is problematic due to the relatively slow lateral diffusion rate for lipid molecules so that microsecond or longer time scales are needed to fully model the formation and stability of a raft in a membrane. Although atomistic simulations currently are not able to reach this scale, they can provide data on the intermolecular forces and correlations that are involved in lateral organization. These data can be used to define coarse grained models that are capable of predictions of lateral organization in membranes. In this paper, we review modeling efforts that use interaction data from MD simulations to construct coarse grained models for heterogeneous bilayers. In this review we will discuss MD simulations done with the aim of gaining the information needed to build accurate coarse-grained models. We will then review some of the coarse-graining work, emphasizing modeling that has resulted from or has a basis in atomistic simulations.  相似文献   

19.
To define the role of cytoplasmic microtubules in the biogenesis of plasmalemma glycoproteins of rat small-intestinal villus cells, we studied the effect of colchicine on the incorporation of L-[1,5,6-3H]fucose into Golgi, lateral basal and microvillus membranes. Colchicine was administered intraperitoneally before or after injection of radioactive fucose. The incorporation of radioactivity into Golgi membranes was little affected by colchicine, which did not prevent the redistribution of most of the labelled glycoproteins from the Golgi complex into other parts of the villus cell. The incorporation of labelled glycoproteins into the microvillus membrane was greatly inhibited by colchicine given 2 h or 10 min before the radioactive fucose: all labelled glycoproteins present in this membrane were equally affected. In contrast, the administration of colchicine considerably increased the incorporation of radioactivity into the lateral basal part of the plasmalemma, and prevented the disappearance of most of the labelled glycoproteins from this membrane at late times after fucose injection. These results suggest that cytoplasmic microtubular structures are important for the polarization of the intestinal villus cell and the biogenesis of the microvillus membrane, although playing little or no role in the movement of membrane components from the Golgi complex to the lateral basal part of the plasmalemma.  相似文献   

20.
The amniotic membrane encloses the amniotic fluid and plays roles in the regulation of amniotic fluid flux through the intramembranous pathway during pregnancy. Aquaporins (AQPs) 1, 3, 8, and 9 are expressed in amniotic membranes. AQPs are water channel proteins that facilitate the rapid flux of water or small molecules across the plasma membrane. Recently, additional roles of AQPs in facilitating cell migration, proliferation, and apoptosis have been suggested, with AQPs being distributed in the appropriate subcellular regions for their functions. The cellular and subcellular distributions of AQPs in the amniotic membrane however remain unclear. We have examined the cellular and subcellular localization of AQPs in amniotic membranes during pregnancy in mice. After embryonic day 12 (E12), AQP1 was distributed in the plasma membrane of finely branched cell processes in the amniotic fibroblasts. AQP3 was present in both epithelial cells and fibroblasts between E10 and E12. The distribution of AQP3 in the epithelial cells dynamically changed as follows: at E14 in the lateral membrane and apical junction; at E16 in the lateral membrane alone; at E17 in the lateral membrane and cytoplasm. AQP8 was expressed in the epithelial cells and complementarily localized in the apical junction and the lateral membrane. AQP9 was detected only in the apoptotic cells of the epithelium. These cellular and subcellular localizations of amniotic AQPs indicate that each AQP plays distinct functional roles, such as in water and urea transport, cell migration, cell proliferation, and apoptosis, for amniotic fluid homeostasis or tissue remodeling of amniotic membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号