首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Question: What are the tempo and mode of long‐term succession and of demographic processes in an alpine community, especially: tenacity, transition patterns, predictions, growth of individual cushion plants, cyclic succession, spatial patterns? Location: A low‐alpine mixed cushion /turf /snow‐tussock / shrub community in southeastern New Zealand. Methods: The distribution of seven plant cover‐types was recorded at 1024 fixed points in an 8 m × 8 m plot at approximately decade intervals for 50 years. The diameters of eight Donatia novae‐zelandiae cushions were monitored. Results: The process was essentially first‐order Markovian. There was a change in transition frequencies about 1980. The tenacity of the two major cover types — cushion and turf — was high, but that of cushion decreased about 1980 as some of its area was taken over by turf. The original informal prediction of 1955 that the cushion/turf would increase proved to be correct, probably because of paludification of the site. A prediction of 1987 made from observed transitions that cushion would dominate over turf has proved untrue because of a change in the transition probabilities in the 1980s, of unknown cause. There is a ten‐fold range in diameter growth rates among the eight cushions measured, but the mean rate of 5.3 mm.a‐1 is similar to that reported from other alpine and arctic sites. As cushions aged, turf colonized their centres, and in two cases new cushions colonized into this turf: consistent with cyclic succession. The pattern of transitions was compatible with a general interpretation of cyclic succession, but not definitive. Conclusions: Change is slow in this alpine community, and tenacity high. The change in transition frequencies about 1980, the invasion of individual cushions, and the decrease in spatial autocorrelation all suggest that cushions established on the site as a result of the clearance of woody vegetation after 1400 AD. Paludification may be causing some loss of tussock grass. A tendency for the cushions to break up, and the shallow peat accumulated below them, may indicate that they are the first generation of cushions on the site. Though these cushions are breaking up, other cushions are establishing, and cushions will continue to be an important part of the vegetation dynamics which may be part of a cyclic succession.  相似文献   

2.
Plant communities were studied on Barton Peninsula around King Sejong Station on King George Island, maritime Antarctic. The objective of this study was to document the occurrence and distribution of plant assemblages to provide the bases for monitoring the effects of environmental changes and human impact on the vegetation of this area. Approximately 47% of the investigated area was covered by vegetation. Crustose lichens showed the highest mean cover (21%) among vegetation components. The total mean cover of the four dominant taxa, together with the other three major subdominant components, i.e., Usnea spp., Andreaea spp. and Sanionia georgico-uncinata, was 78.2% of the total cover of all the species. Lichen cover and species diversity increased with altitude and the time of exposure from snow. Lichens contributed substantially more to the increased species density and diversity than did bryophytes. Ten plant communities were recognized within the study area. All of them belong to the Antarctic cryptogam tundra formation; they were grouped into four subformations: fruticose lichen and moss cushion subformation, crustose lichen subformation, moss carpet subformation and moss hummock subformation. The moss turf subformation was not found on this region. The Antarctic herb tundra formation was also not found; however, the populations of both Antarctic vascular plants have rapidly expanded around Barton Peninsula in recent years, which may allow development of the Antarctic herb tundra formation in the future.  相似文献   

3.
The Montseny brook newt (Calotriton arnoldi) is a critically endangered amphibian species which inhabits a small 20 km2 holm oak and beech forest area in NE Spain. Calotriton arnoldi strictly lives in running waters and might be highly vulnerable to hydrological perturbations expected to occur under climate and vegetation cover changes. Knowledge about the potential response of the species habitat to environmental changes can help assessing the actions needed for its conservation. Based on knowledge of the species and supported by observations, we proposed daily low and high streamflow event thresholds for the viability of C. arnoldi. We used the rainfall–runoff model PERSiST to simulate changes in the frequency and duration of these events, which were predicted under two climate and four vegetation cover scenarios for near‐future (2031–2050) and far‐future (2081–2100) periods in a reference catchment. All future scenarios projected a significant decrease in annual streamflow (from 21% to as much as 67%) with respect to the reference period. The frequency and length of low streamflow events will dramatically increase. In contrast, the risk of catastrophic drift linked to high streamflow events was predicted to decrease. The potential change in vegetation toward an expansion of holm oak forests will be more important than climate changes in determining threshold low flow conditions. We thus demonstrated that consideration of potential changes in vegetation and not only changes in climate variables is essential in simulating future streamflows. This study shows that future low streamflow conditions will pose a severe threat for the survival of C. arnoldi and may help taking management actions, including limiting the expansion of holm oak forest, for ameliorating the species habitat and help its conservation.  相似文献   

4.
A review is presented on the occurrence and role of cyanobacteria and eukaryotic algae in sports turf, especially golf curses, and on the problems arising when these organisms become abundant. The literature depends largely on observations in only a few countries, mainly Canada, New Zealand, U.K. and U.S.A., but problem growths are probably widespread. The genera reported to be conspicuous at times include Nostoc, Phormidium, Coccomyxa, Cosmarium, Cylindrocystis, Klebsormidium, Mesotaenium and Zygogonium. Conspicuous surface growths are probably most often related to unsatisfactory drainage or irrigation practices, but other factors such as fertilizer treatment (especially excess ammonium sulphate) have been implicated. These surface growths sometimes incorporate copious mucilaginous ‘slime’, which can be a serious hazard by causing people to slip. U.K. observations suggest that this is especially likely under acidic conditions, where Coccomyxa, Cylindrocystis and Mesotaenium are among the probable culprits. Some literature indicates that cyanobacteria are also associated with a subsurface black layer, which can cause serious problems for turf management where sandy soils are subject to unsatisfactory drainage. It seems likely, however, that cyanobacteria are largely, if not entirely, absent from the subsurface layer, but may form a dark layer at the turf surface overlying the position of the subsurface black layer. The dark surface layer is probably due largely to narrow filamentous cyanobacteria, whose growth may enhance the poor drainage and thus reinforce the conditions favouring the black subsurface layer associated with anoxic conditions. The soil algal vegetation of sports turf may also be expected to exhibit beneficial effects known to occur in soils of other types of community, such as nitrogen fixation by some cyanobacteria and the binding of particles. However, little study on such effects has been directed specifically to sports turf.  相似文献   

5.
Many mountain pastures consist of a mosaic of grassland and shrub communities. Ongoing changes in mountain agriculture have affected the balance between the two elements of the mosaic. In order to understand the consequences of these changes for ecosystem functioning, we studied patterns in vegetation, root structure and soil properties along transects of varying grassland-to-shrub proportions. Our hypothesis was that differences in the vegetation aboveground are accompanied by differences belowground, related to soil properties and depth. The research was conducted at a subalpine site in the Trentino region (South-eastern Alps), consisting of Nardus stricta grasslands alternating with shrub patches of Rhododendron ferrugineum. Our investigation showed that the composition of vegetation was mainly governed by R. ferrugineum cover and less by soil properties. Plant species richness peaked at low to intermediate degrees of shrub cover and composition between transects became more similar with increasing shrub cover. Where R. ferrugineum cover was higher, Hemicryptophytes caespitosae were replaced by Nano-phanerophytes with consequences for belowground structures. At increasing shrub cover, root length density decreased, especially in the top soil, while root weight density remained stable and C content increased insignificantly. We discuss that theses structural changes along the gradient of R. ferrugineum cover affect a number of ecosystem services. The presented evidence suggests that maintaining grasslands with a low cover of R. ferrugineum balances a number of services, namely plant species diversity, carbon stabilization in soil and the prevention of soil erosion.  相似文献   

6.
Abstract. Plant productivity is limited by mineral nutrient availability in many boreal forest ecosystems. This study is an analysis of the growth responses of components of a boreal plant community (cryptogams, herbaceous and woody perennials, the dominant shrubs Salix glauca (grey willow) and Betula glandulosa (bog birch) and the dominant tree Picea glauca (white spruce), to the addition of an NPK fertilizer over a nine-year period. The study was carried out in a low-nutrient boreal forest ecosystem in the Yukon territory in northwestern Canada. The following predictions were tested: (1) that there would be an overall increase in abundance (measured either as cover, density, or dry mass) of all components of the vegetation, (2) that vegetation composition would change as more competitive species increased in abundance and (3) that initial community changes in response to fertilization would be transient. In general, all predictions were found to be true. Species composition changed rapidly in response to fertilizer. Graminoids (e.g. Festuca altaica) and some dicots (e.g. Mertensia paniculata and Achillea millefolium) increased in cover, while other dicots (e.g. Anemone parviflora), dwarf shrubs (e.g. Arctostaphylos uvaursi), bryophytes and lichens declined. There was a significant increase in the growth rate of the two dominant shrubs and of Picea, but not in the cone crop or seed production by Picea. Surveys after 1 or 2 years showed responses by the vegetation but more stable patterns of response did not emerge until after 5 or 6 years. There were consistent and directional changes in the percent cover of some of the herbaceous species on control plots. Growth rates of Salix and Betula varied considerably from year to year, independently of treatment. Long-term studies are essential if we are to understand the role of nutrient limitation in this ecosystem.  相似文献   

7.
Abstract The savannas of South America support a relatively diverse ant fauna, but little is known about the factors that influence the structure and dynamics of these assemblages. In 1998 and 2002, we surveyed the ground‐dwelling ant fauna and the fauna associated with the woody vegetation (using baits and direct sampling) from an Amazonian savanna. The aim was to evaluate the influence of vegetation structure, disturbance by fire and dominant ants on patterns of ant species richness and composition. Variations in the incidence of fires among our 39 survey plots had no or only limited influence on these patterns. In contrast, spatial variations in tree cover and cover by tall grasses (mostly Trachypogon plumosus), significantly affected ant species composition. Part of the variation in species richness among the study plots correlated with variations in the incidence of a dominant species (Solenopsis substituta) at baits. Ant species richness and composition also varied through time, possibly as an indirect effect of changes in vegetation cover. In many plots, and independently of disturbance by fire, there was a major increase in cover by tall grasses, which occupied areas formerly devoid of vegetation. Temporal changes in vegetation did not directly explain the observed increase in the number of ant species per plot. However, the incidence of S. substituta at baits declined sharply in 2002, especially in plots where changes in vegetation cover were more dramatic, and that decline was correlated with an increase in the number of ground‐dwelling species, a greater turnover of bait‐recruiting species and the appearance of the little fire ant Wasmannia auropunctata. The extent to which these changes in fact resulted from the relaxation of dominance by S. substituta is not clear. However, our results strongly suggest that the ant fauna of Amazonian savannas is affected directly and indirectly by the structure of the vegetation.  相似文献   

8.
Questions: Are there changes in species composition of the oceanic, Low‐Arctic tundra vegetation after 40 years? Can possible changes be attributed to climate change? Location: Ammassalik Island near Tasiilaq, Southeast Greenland. Methods: Species composition and cover of 11 key vegetation types were recorded in 110 vegetation survey plots in 1968–1969 and in 11 permanent plots in 1981. Recording was repeated in 2007. Temporal changes in species composition and cover between the surveys were tested using permutation tests linked with constrained ordinations for vegetation types, and Mann–Whitney tests for individual species. Changes in vegetation were related to climate change. Results: Although climate became warmer over the studied period, most of the vegetation types showed minor changes. The changes were most conspicuous in mire and snowbed vegetation, such as the Carex rariflora mire and Hylocomium splendens snowbed. In the C. rariflora mire, species number and cover of vascular plants and cover of bryophytes increased, whereas in the H. splendens snowbed species numbers of vascular plants, bryophytes, and also lichens increased. Lichen richness increased in the Carex bigelowii snowbed and cover of bryophytes in the Salix herbacea snowbed. No such changes occurred in the Alchemilla glomerulans meadow, Alchemilla alpina snowbed and Phyllodoce coerulea heath. There was no change of species composition within the Salix glauca scrub, A. alpina snowbed, lichen grassland and the Empetrum nigrum and Phyllodoce coerulea heaths. Most changes resulted from increasing frequency or cover of some species; there were very few decreasing species. Most of the increasing species indicate drier substrate conditions. Conclusions: Only minor changes in species composition and cover were detected in the vegetation types studied. These changes were probably caused by milder winters and warmer summers during the years before the 2007 sampling. Climate warming may have reduced the duration of snow cover and soil moisture, particularly in snowbed and mire habitats, where species composition change was most pronounced. However, its magnitude was insufficient to cause a major change in species composition. Thus, on the level of plant community types, tundra vegetation near Tasiilaq was rather stable over the last 40 years.  相似文献   

9.
刘晓娟  孙学刚  田青 《生态学报》2016,36(10):2905-2913
在甘肃盐池湾国家级自然保护区内海拔4137 m处,选择典型的囊种草垫状植被设置研究样地,研究了垫状植物囊种草对群落物种组成和群落物种多样性的影响,并且定量的研究了囊种草对群落物种丰富度的影响能力和维持潜力。研究结果表明:囊种草为群落中增加了新的植物种类,并且提高了部分生境一般种的多度;囊种草的出现提高了群落物种密度和物种丰富度,进而提高了群落物种多样性;囊种草斑块的增加将会引起景观水平物种丰富度的增加,表明囊种草具有为群落中引入新的植物种类进而提高群落物种丰富度的能力;在景观水平,囊种草所创造的生境多样性则成为一种保障,可以维持景观中物种丰富度从而降低物种损失的风险,表明囊种草具有较高的群落物种丰富度维持潜力。  相似文献   

10.
Climate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change. Peatland carbon accumulation is determined by the balance between plant production and peat decomposition. But both processes are expected to accelerate in northern peatlands due to warming, leading to uncertainty in future peatland carbon budgets. Here, we compile a dataset of vegetation changes and apparent carbon accumulation data reconstructed from 33 peat cores collected from 16 sub-arctic peatlands in Fennoscandia and European Russia. The data cover the past two millennia that has undergone prominent changes in climate and a notable increase in annual temperatures toward present times. We show a pattern where European sub-Arctic peatland microhabitats have undergone a habitat change where currently drier habitats dominated by Sphagnum mosses replaced wetter sedge-dominated vegetation and these new habitats have remained relatively stable over the recent decades. Our results suggest an alternative future pathway where sub-arctic peatlands may at least partly sustain dry vegetation and enhance the carbon sink capacity of northern peatlands.  相似文献   

11.
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub‐Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century.  相似文献   

12.
In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition into account. In a salt-marsh system, the long-term effects of exclusion of a large herbivore (cattle) on the abundance of a small herbivore (hare) were studied. Excluding cattle grazing for 30 years resulted in large changes in vegetation composition. In general, the cover of tall-growing species increased in the absence of cattle grazing. These long-term changes negatively affected hare grazing intensity. Hares preferentially fed on Festuca rubra and negatively selected tall growing plants, such as Elymus athericus, both in cattle-grazed and long-term ungrazed areas. However, the intensity of hare grazing was not related to the cover of F. rubra. The cover of tall-growing plants (E. athericus, Atriplex prostrata and Juncus maritimus) appeared to be the best predictor and hare grazing intensity decreased sharply with an increase of the cover of tall plants. When cover of tall plants did not increase, hare grazing intensity was not affected. The study shows that the time-scale of the experiment is of prime importance in studying interactions between herbivores. Species that do not seem to influence the abundance of one another or are competing for the same resources on a short time-scale might well be facilitating each other when looking at larger time-scales while taking plant species replacement into account.  相似文献   

13.
Biogenic habitat creation refers to the ability of some organisms to create, maintain or destroy habitats. These habitat changes affect species diversity of natural communities, but it remains to be elucidated if this process also affects the link between ecosystem functions and species diversity. Based on the widely accepted positive relationships between ecosystem functions and species diversity, we hypothesize that these relationships should be different in biogenically created habitat patches as compared to unmodified habitat patches. We tested this hypothesis by assessing the effects of a high-Andean cushion plant, Azorella madreporica, which creates habitat patches with different environmental conditions than in the surrounding open areas with reduced vegetation cover. We used observational and experimental approaches to compare the plant biomass–species richness relationships between habitat patches created by A. madreporica cushions and the surrounding habitat without cushion plants. The observational assessment of these relationships was conducted by counting and collecting plant species within and outside cushion patches. In the experiment, species richness was manipulated within and outside cushion patches. The cushion plant itself was not included in these approaches because we were interested in measuring its effects. Results of both approaches indicated that, for a given level of species richness, plant biomass within cushions was higher than in the surrounding open areas. Furthermore, both approaches indicated that the shape of plant biomass–species richness curves differed between these habitat types. These findings suggest that habitat modifications performed by A. madreporica cushions would be positively affecting the relationships between ecosystem functions and species diversity.  相似文献   

14.
Over the last few years, Deep learning (DL) approaches have been shown to outperform state-of-the-art machine learning (ML) techniques in many applications such as vegetation forecasting, sales forecast, weather conditions, crop yield prediction, landslides detection and even COVID-19 spread predictions. Several DL algorithms have been employed to facilitate vegetation forecasting research using Remotely Sensed (RS) data. Vegetation is an extremely important component of our global ecosystem and a necessary indicator of land cover dynamics and productivity. Vegetation phenology is influenced by lifecycle patterns, seasonality and weather conditions, leading to changes in their spectral reflectance. Various relevant information, such as vegetation indices (VIs), can be extracted from RS data for vegetation forecasting. Therefore, the Normalized Difference Vegetation Index (NDVI) is known as one of the most widely recognized indices for vegetation related studies. This paper reviews the related works on DL-based spatio-temporal vegetation forecasting using RS data over the period between 2015 and 2021. In this review, we present several DL-based studies and discuss DL algorithms and various sources of data that have been used in these studies. The purpose of this work is to highlight the open challenges such as spatio-temporal prediction issues, spatial and temporal non-stationarity, fusion data, hybrid approaches, deep transfer learning and large parameter requirements. We also attempt to figure out the future directions and limits of DL for vegetation forecasting.  相似文献   

15.
Transforming a shrubland into a dehesa system may be useful for recovering certain productive and regulatory functions of ecosystems such as grazing potential, soil erosion control, and also for reducing the risk of wildfire. However, the productivity of the herbaceous cover and tree development in the transformed system may be limited by soil fertility, especially after wildfire events. Previous studies have shown that adequate doses of sewage sludge may improve soil fertility and facilitate plant recovery, but few studies have focused on plant biodiversity assessment. Here, we compare the effects of sewage sludge that has undergone different post‐treatments (dewatering, composting, or thermal drying) as a soil amendment used to transform a fire‐affected shrubland into a dehesa, on tree growth and pasture composition (vegetation cover, species richness, and diversity). In the short term, sewage sludge causes changes in both pasture cover and tree growth. Although no major differences in vegetation species richness and composition have been detected, fertilization using sewage sludge was shown to modify the functional diversity of the vegetation community. Rapid replacement of shrubs by herbaceous cover and ruderal plants (e.g. Bromus hordeaceus and Leontodon taraxacoides) and of the three grass species sown (Festuca arundinacea, Lolium perenne, and Dactylis glomerata) was observed, whereas N‐fixing species (leguminous) tended to be more abundant in nonfertilized soils and soils amended with composted sludge. These results indicate that sewage sludge modifies the functionality of vegetation when applied to soils, and that the response varies according to the treatment that the sludge has undergone.  相似文献   

16.
According to the EU Habitats Directive, heathlands are a semi-natural habitat type of community interest. This status aims at conserving these habitats, especially where and when they are threatened by various changes, including natural vegetation succession. We present results of a study of the dynamics of a typical dry heathland plot located in the Fontainebleau massif (France). An exhaustive observation of vegetation changes were made on this area of four hectares between 2000 and 2008, employing a spatial approach. We recorded the expansion of Molinia caerulea (L.) Moench at the expense of Ericaceae. The potential future vegetation of the site was modelled using Markov chains coupled to a GIS programme. This model predicted a gradual change in the floristic composition of heathland in favour of M. caerulea at the expense of Calluna vulgaris (L.) Hull and Erica tetralix L., and the expansion of Pinus sylvestris L. The study demonstrates how spatial methods can contribute to the design of reliable management methods of habitats such as the heathlands.  相似文献   

17.
The dominance of Corallina thalli in an intertidal algal assemblage was examined by a series of algal removal experiments to test the hypothesis that other tam are competitively excluded from rock substrate. An alternate explanation, that environmental factors seasonally filter out taxa leaving Corallina as the only alga adapted for year to year survival, was considered. Development of vegetation on patches of naturally exposed bare rock was monitored and compared with manipulated surfaces. Thalli of several species were selectively removed from exposed surfaces and intact turf;. changes in tam occupying primary substrate were recorded over more than three years. No significant differences in mean percent cover for Corallina, Lithothrix, bare rock, or algal crusts were found among treatments. Except for initial growth of colonizing species, abundances of other species dad not increase in the absence of Corallina. Large amounts of rock remained bare or intermittently covered by transient populations of short-lived algae. Data from single quad-rats, where individual clumps of Lithothrix were followed from month to month, indicated that the continued presence of this co-occurring and often abundant species depended on turnover of short-lived thalli rather than persistence of the same clumps. No interactions were found among the several categories of species that appeared after rock substrate was cleared. Most species were the same ones that grew, epiphytically in intact turf at the same time. In control quadrats Corallina maintained 59-95% cover while slowly increasing on surfaces earlier exposed. I predict that Corallina species will regain their dominance in the absence of competitors for primary substrate if the slowly spreading basal crusts remain undisturbed. Morphological and life history characteristics are identified that adapt Corallina to its dominant role in this habitat.  相似文献   

18.
Most species‐rich fen meadows in nature reserves in The Netherlands are acidified due to weaker upwelling of base‐rich groundwater. The present study investigated whether and why turf stripping combined with superficial drainage might promote the long‐term recovery of such meadows and restore the nutrient‐poor, buffered conditions they require. In a field experiment, we analyzed changes in vegetation composition, soil parameters, and soil water chemistry in stripped plots of degraded Cirsio‐Molinietum vegetation over 12 years. After the first five years, many species from the target communities occurred in stripped plots. Both vegetation and soil data showed positive effects of turf stripping on the acid‐buffering capacity. Because sulfate concentration in the soil water decreased over time, whereas the bicarbonate concentration increased, we inferred that there was internal alkalinization driven by sulfate reduction in low‐lying stripped plots. However, the succession toward more acidophilus plant communities, in both control and stripped plots, indicated gradual acidification. This may be caused by a continuing weakening of the upward seepage of base‐rich groundwater as shown by declining calcium concentrations in the soil water. Though turf stripping exposed a nutrient‐poor soil layer with a greater acid‐buffering capacity, these positive effects might not be sufficient to combat the ongoing acidification in the long term.  相似文献   

19.
ABSTRACT The ecological effects of land-use practices on reptiles, especially endangered or threatened species, are of conservation and scientific interest. We describe the effects of rotational livestock grazing and prescribed winter burning on resources and survival of the Texas horned lizard (Phrynosoma cornutum) during the summers of 1998 to 2001 in southern Texas, USA. We evaluated survival rates of Texas horned lizards (n = 111) on 6 study sites encompassing 5 different burning and grazing treatments. We also measured indices of cover (i.e., vegetation) and food abundance (i.e., harvester ants [Pogonomyrmex rugosus]). We telemetered and relocated adult lizards daily. We divided the study into 2 seasons, spring (15 Apr–30 Jun) and summer (1 Jul–15 Aug), corresponding to the relative activity of horned lizards. Winter burning provided an increase in food resources and led to increased survival of Texas horned lizards in the second growing season after fire, but grazing-induced changes in vegetation cover reduced survival, likely by increasing lizard vulnerability. Fire and grazing reduced litter and increased bare ground and forb cover but did not affect woody vegetation. Ant activity was greater in burned sites and varied with grazing level, season, and year. Summer survival functions of horned lizards varied by burning treatment, with higher survival observed on burned sites in the second year after burning. Survival rates were ordered from highest in ungrazed sites to lowest in heavily grazed sites. We recognize the limitations of our work resulting from a lack of spatial replication of treatments. However, our mensurative study provides fertile ground for future hypothesis testing regarding the effects of land management on shrubland and grassland reptiles. We propose that future studies focus on the population consequences of variation in burn frequency, burn timing, and grazing intensity.  相似文献   

20.
In the Netherlands peat was excavated for fuel until 1950. This gave rise to waterbodies (called turf ponds) which were then colonized by aquatic plants. Succession resulted in different aquatic plant communities and more terrestrialized stages such as floating fens. Nature conservation authorities started to excavate new turf ponds in 1990(ca. 2 ha y–1) with the aim to restore calcareous, mesotraphent ecosystems by totally setting back succession. A sequence of new species was revealed by mapping the aquatic vegetation from 1990 onwards.Chara spp. proved early colonizers, which was not expected because they have not been present in ditches and ponds in the area for the last 20 years. The denseChara vegetation prevents the resuspension of organic soil and contributes to keep the water column nutrient-poor and clear. ability of species such asStratiotes aloides to colonise the ponds from adjacent waterbodies is not possible because no open contact exists between a turf pond and a ditch. Management measures, such as re-introduction, have to be considered if the full-range of aquatic plant communities remains the goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号