首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Relationships between body size and abundance in collections of animals from the tanks of 73 bromeliads belonging to five species were analysed. Unlike data in previously published studies on this relationship, these collections of species are not taxonomically restricted and represent complete communities over the macroscopic range of organisms. There is no overall tendency for there to be a positive or negative relationship between population abundance and body size of morphospecies. We can find no evidence that body size-abundance patterns are triangular in complete communities. However, there is weak evidence that the relationship in the aquatic subsets of those communities may have some underlying triangularity, with medium-sized species having the largest populations.  相似文献   

2.
Several bromeliads species store water and organic substrates, allowing the establishment of phytotelmata and associated fauna on their leaves. In this study, we sampled 70 individuals of Vriesea sp. (Carrière) (Bromeliaceae), in rupestrian fields in the Serra de Ouro Branco-MG, Brazil. The relationships between invertebrate species richness and abundance and size of bromeliads were tested using multiple regression. We found 19 species associated with bromeliads, mainly Diptera larvae. The abundance of the phytotelmate fauna increased principally in relation to the volume of water in the bromeliad reservoir. Phytotelmata richness was affected principally by diameter of the reservoir. There was a significant relationship between the abundance and richness of invertebrates associated with leaves with diameter and height of the plant. Invertebrate richness was better explained by abundance of individuals. These results suggest that the increase of richness was attended by higher numbers of microhabitats and more space for colonization of bigger bromeliads. Additionally, there was more chance of sampling different species in locales with greater abundance of individuals.  相似文献   

3.
Ecological communities hosted within phytotelmata (plant compartments filled with water) provide an excellent opportunity to test ecological theory and to advance our understanding of how local and global environmental changes affect ecosystems. However, insights from bromeliad phytotelmata communities are currently limited by scarce accounts of microfauna assemblages, even though these assemblages are critical in transferring, recycling, and releasing nutrients in these model ecosystems. Here, we analyzed natural microfaunal communities in leaf compartments of 43 bromeliads to identify the key environmental filters underlying their community structures. We found that microfaunal community richness and abundance were negatively related to canopy openness and vertical height above the ground. These associations were primarily driven by the composition of amoebae and flagellate assemblages and indicate the importance of bottom‐up control of microfauna in bromeliads. Taxonomic richness of all functional groups followed a unimodal relationship with water temperature, peaking at 23–25°C and declining below and above this relatively narrow thermal range. This suggests that relatively small changes in water temperature under expected future climate warming may alter taxonomic richness and ecological structure of these communities. Our findings improve the understanding of this unstudied but crucial component of bromeliad ecosystems and reveal important environmental filters that likely contribute to overall bromeliad community structure and function.  相似文献   

4.
1. Bromeliad and heliconia phytotelmata in the same forest area were compared in terms of their animal assemblages, nutrient inputs, and plant architecture. 2. For all major elements, nutrient inputs from canopy‐derived debris and rainfall in bromeliads were significantly lower than those derived from decaying flower parts and plant secretions in heliconia bracts. Bromeliads contained significantly fewer organisms per unit volume of water and unit dry weight of organic matter than did heliconia inflorescences. They also contained a significantly lower animal biomass (199 mg DW from 15 bromeliads, 527 mg DW from 15 heliconia inflorescences). 3. Species richness was independent of abundance, demonstrating that, at least for small container habitats, higher abundance does not necessarily lead to a greater species richness. Communities were remarkably similar in patterns of relative abundance and species richness (23 spp. in bromeliads, 21 spp. in heliconia), probably due to functional similarities in plant architecture, with the two most abundant species comprising 60–62% of the total community. Coefficients of similarity were low because of marked differences in species assemblages. 4. Some taxa were phytotelm generalists but most showed a preference for one particular habitat, indicating differential selection in the choice of oviposition sites and larval development within the forest ecosystem. In common with many island communities, species richness was lower than that reported for these phytotelm habitats in mainland central and south America.  相似文献   

5.
In this study we examine whether stabilization of denuded coastal foredunes in southeastern Australia with the exotic grass species Ammophila arenaria (marram grass) restores plant and ground‐active arthropod assemblages characteristic of undisturbed foredunes. Vascular plants and arthropods were sampled from foredunes that had been stabilized with marram grass in 1982, and from foredunes with no obvious anthropogenic disturbance (control dunes). All arthropods collected were sorted to Order, and ants (81.5% of all specimens) were further sorted to morphospecies. Abundance within arthropod Orders, as well as richness, composition, and structure of the plant and ant assemblages from control and stabilized dunes, were compared. The abundance of Diptera was significantly greater on stabilized dunes, while the abundance of Isopoda was significantly greater on control dunes. There were no significant differences in morphospecies richness or composition of ant assemblages on the two dunes types, although some differences in the abundances of individual morphospecies were observed. By contrast, stabilized dunes exhibited lower plant species richness and highly significant differences in plant species composition, due mainly to the large projected foliage cover of marram grass. The study revealed that after 12 years, the vegetation composition and structure of stabilized dunes was still dominated by marram grass and, as a result, invertebrate assemblages had not been restored to those characteristic of undisturbed foredunes.  相似文献   

6.
Turloughs, which are classified as priority habitats under the European Habitats Directive, are seasonally flooded depressions found almost exclusively in Ireland. In 2001, three adjacent fields with different stocking densities were selected and plant/dipteran communities within the same vegetation zone of each field (site) were investigated using quadrats and sweep netting, respectively. There was a significant positive relationship between Diptera morphospecies richness/Diptera abundance and mean vegetation height (P < 0.001). However, no significant relationship between Diptera morphospecies richness and plant species richness was found. Median Diptera morphospecies richness per sweep was lower at the site with the highest stocking density (17) than at the other two sites (22 and 31, respectively). Total species richness of Sciomyzidae was greater at the least grazed site (7) than at the more heavily grazed sites (2 and 1, respectively). The results suggest that an evaluation of turlough management practices based on plant communities alone is not sufficient and that at least some areas within the turlough basin remain ungrazed on a rotational basis to ensure maximum diversity of Diptera.  相似文献   

7.
Although stochastic and deterministic processes have been found to jointly shape structure of natural communities, the relative importance of both forces may vary across different environmental conditions and across levels of biological organization. We tested the effects of abiotic environmental conditions, altered trophic interactions and dispersal limitation on the structure of aquatic microfauna communities in Costa Rican tank bromeliads. Our approach combined natural gradients in environmental conditions with experimental manipulations of bottom-up interactions (resources), top-down interactions (predators) and dispersal at two spatial scales in the field. We found that resource addition strongly increased the abundance and reduced the richness of microfauna communities. Community composition shifted in a predictable way towards assemblages dominated by flagellates and ciliates but with lower abundance and richness of algae and amoebae. While all functional groups responded strongly and predictably to resource addition, similarity among communities at the species level decreased, suggesting a role of stochasticity in species-level assembly processes. Dispersal limitation did not affect the communities. Since our design excluded potential priority effects we can attribute the differences in community similarity to increased demographic stochasticity of resource-enriched communities related to erratic changes in population sizes of some species. In contrast to resources, predators and environmental conditions had negligible effects on community structure. Our results demonstrate that bromeliad microfauna communities are strongly controlled by bottom-up forces. They further suggest that the relative importance of stochasticity may change with productivity and with the organizational level at which communities are examined.  相似文献   

8.
With the growing interest in small aquatic water bodies, especially as naturally replicated model systems for ecological research, aquatic invertebrate communities in phytotelmata are increasingly receiving attention these days. The recognition of the substantial contribution to the regional species pool of specialised species draws further attention to these small and often temporary habitats. The methods currently used for studying communities in some types of phytotelma, such as bromeliads, tend to be destructive, typically involving complete dissection of the plant. The expected increase in sampling intensity associated with the increasing interest in phytotelmata may result in a negative impact on plant populations in some areas, decreasing numbers in an unsustainable way, especially in locations with ongoing, intensive research. We therefore aimed to investigate whether less-destructive sampling methods can achieve sufficient data quality to allow their use as alternatives to complete plant dissection. We tested the effectiveness of three such methods in measuring the aquatic invertebrate communities in tank bromeliads (Tillandsia guatemalensis) in Cusuco National Park, Honduras. The three methods were pipetting the water out of the bromeliad, turning the bromeliad upside down and dissecting only the outer part of the plant (the oldest, often deteriorating leaves). Overall, we found that these methods were poor predictors of richness and abundance of the organisms in communities. However, we found big differences between taxonomic groups, depending in part on the ecology of the organisms, and we suggest that some less-destructive alternative methods may be appropriate for studying some specific groups (e.g. Culicidae). Based on these results and a rapid survey of the abundance of bromeliads in the national park, we question whether intensive, ongoing research into aquatic invertebrate communities in similar phytotelma populations is sustainable. From the point of view of conservation, alternative model systems need to be found.  相似文献   

9.
To address how multiple, interacting climate drivers may affect plant–insect community associations, we sampled insects that naturally colonized a constructed old‐field plant community grown for over 2 years under simultaneous CO2, temperature, and water manipulation. Insects were sampled using a combination of sticky traps and vacuum sampling, identified to morphospecies and the insect community with respect to abundance, richness, and evenness quantified. Individuals were assigned to four broad feeding guilds in order to examine potential trophic level effects. Although there were occasional effects of CO2 and water treatment, the effects of warming on the insect community were large and consistent. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Nonmetric multidimensional scaling found that only temperature affected insect community composition, while a Sørensen similarity index showed less correspondence in the insect community between temperature treatments compared with CO2 or soil water treatments. Within the herbivore guild, elevated temperature significantly reduced richness and evenness. Corresponding reductions of diversity measures at higher trophic levels (i.e. parasitoids), along with the finding that herbivore richness was a significant predictor of parasitoid richness, suggest trophic‐level effects within the insect community. When the most abundant species were considered in temperature treatments, a small number of species increased in abundance at elevated temperature, while others declined compared with ambient temperature. Effects of temperature in the dominant insects demonstrated that treatment effects were limited to a relatively small number of morphospecies. Observed effects of elevated CO2 concentration on whole‐community foliar N concentration did not result in any effect on herbivores, which are probably the most susceptible guild to changes in plant nutritional quality. These results demonstrate that climatic warming may alter certain insect communities via effects on insect species most responsive to a higher temperature, contributing to a change in community structure.  相似文献   

10.
M. Jocque  R. Field 《Hydrobiologia》2014,730(1):153-166
Tank bromeliads (Bromeliaceae) often occur in high densities in the Neotropics and represent a key freshwater habitat in montane forests, housing quite complex invertebrate communities. We tested the extent to which there are species richness–altitude, richness–environment, richness–size, richness–habitat complexity and richness–isolation relationships for the aquatic invertebrate communities from 157 bromeliads in Cusuco National Park, Honduras. We found that invertebrate species richness and abundance correlated most strongly, and positively, with habitat size, which accounted for about a third of the variance in both. Apart from bromeliad size (equivalent of the species–area relationship), we found remarkably little evidence of classic biogeographic and ecological relationships with species richness in this system. Community composition correlated with altitude, bromeliad size and position, though less than 20% of the variation was accounted for by the tested variables. The turnover component of dissimilarity between the communities correlated with altitude, while the nestedness-resultant component was related to bromeliad size. The unexplained variance could reflect a large stochastic component in the system, associated with the ephemerality of the habitat patches (both the plants themselves and the fluctuations in their water content) and stochasticity due to the dispersal dynamics in the system. We conclude that there is a small contribution of classic biogeographic factors to the diversity and community composition of aquatic invertebrates communities in bromeliads. This may be due to the highly dynamic nature of this system, with small patch sizes and high emigration rates. The patterns may mostly be driven by factors affecting colonisation success.  相似文献   

11.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

12.
Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.  相似文献   

13.
We evaluated the spider diversity of a tropical montane cloud forest understory in two nearby sites with different degree of human disturbance at the Biosphere Reserve Volcán Tacaná, Chiapas, Mexico. The study was conducted over a 24 days period distributed in 6 months in 2009, covering dry and rainy seasons. A total of 8,370 spiders (1,208 adults and 7,162 juveniles) were collected. Determined specimens (7,747) represented 112 species and morphospecies, 71 genera and 22 families. The results showed that human disturbance has an influence on spider communities: species richness was significantly higher in the preserved site as regards to the disturbed site. Despite their proximity, the composition of spider communities showed only a moderate similarity between the two sites. No differences in abundance were found among sites when considering the whole sample, but sites differed clearly when seasons were analyzed separately. The rainy season had a negative effect on the abundance of spiders in the preserved site. Although the spider community structure was very similar between sites, there was a trend towards a greater species evenness in the preserved site for the whole sampling period and for the dry season.  相似文献   

14.
Plant species diversity maintains the stability of ecosystems and the diversity of consumer species such as insect herbivores. Considering that gall-inducing insects are highly specialized on their host plants and dependent on the occurrence, abundance and distribution of plants, we evaluated the diversity patterns of gall-inducing insect along Brazilian Neotropical savannas and the potential role of plant species richness, vegetation structure and super-host presence on determining these patterns. We found 1,882 individual plants that belonged to 64 different host plant species grouped in 31 families, associated to 112 galling insect species. The galling richness was positively influenced by plant species richness and the presence of the super-host genus Qualea (Vochysiaceae). Plant species richness explained 48 % of the galling richness and areas with presence of super-hosts had more than twice of galling species than areas where they were absent. On the other hand, we found no evidence that larger plants hosted more species of galling insects. We observed that for the diversity of galling insects in the Brazilian Cerrado, vegetation structure explained almost the same portion as plant richness, because structural variables did not have an effect on residuals of galling richness and plant richness regression. Our findings suggests that plant richness has a more important role on the mitigation of natural enemies and adaptive radiation of galling species, while structural aspects of the vegetation does not seem to have that effect. Furthermore, we show that the super-host taxa provide an increment in local galling richness because they present a great diversity of local number of gall morphospecies (i.e. alpha diversity) and the high turnover of morphospecies among different localities (i.e. beta diversity). Therefore we argue that the quality of resources (richness and super host presence) appears to be a most important factor for the diversity of galling insects in Neotropical systems, than the amount of resources.  相似文献   

15.
Richness, structure and functioning in metazoan parasite communities   总被引:4,自引:0,他引:4  
Ecosystem functioning, characterized by components such as productivity and stability, has been extensively linked with diversity in recent years, mainly in plant ecology. The aim of our study was thus to quantify general relationships between diversity, community structure and ecosystem functions in metazoan parasite communities. We used data on parasite communities from 15 species of marine fish hosts from coastal Chile. The volumetric abundance (volume of all parasite species per individual host, in mm3) was used as a surrogate for productivity. Species diversity was measured using both species richness and evenness, while community structure was estimated using the co‐occurrence indices V‐ratio, C‐score and a new C‐scores index standardized for the number of host replicates. After correcting for fish size, 47% of host species show no relationship, 13% show a hump shaped curve and 40% show positive monotonic relationships between productivity and parasite richness across all host individuals in a sample. We obtained a logarithmically decreasing relationship between evenness and productivity for all fish species, and propose a ‘dominance‐resistance’ hypothesis based on immunity to explain this pattern. The stability of the parasite community, measured as the coefficient of variation in productivity among individual hosts, was strongly and positively related to mean species richness across the 15 host species. The C‐scores index, based on the number of checkerboard units in the host‐parasite presence/absence matrix, increases linearly with mean productivity across the 15 host species, suggesting that parasite communities tend to be more structured when they are more productive. This is the likely reason why linear relationships between richness and productivity were not observed consistently in all fish species. Parasite communities provide some clear patterns for the diversity–ecosystem functioning debate in ecology, although other factors, such as the history of community assembly, may also influence these patterns.  相似文献   

16.
Canopy arthropods, mainly from palm trees, are little known in the Brazilian Cerrado. In order to describe the arthropod community structure associated with the crown of Mauritia flexuosa (Arecaceae), we sampled 150 palm trees in six "veredas" of the Federal District, Brazil, in wild, rural and periurban areas in the rainy season. The arthropods within abandoned bird nests, mammal refuges, leaves and organic matter were manually collected, preserved in ethanol 70% and separated by order, family, morphospecies and feeding guilds. Stem height and diameter of the palm crowns were measured and leaves and bird nests were counted. We collected 3,862 arthropods, from 15 orders, 45 families and 135 morphospecies. The most abundant orders were Coleoptera (28.6%), Blattodea (21.8%), Collembola (11.4%) and Hemiptera (10.2%). The families Blaberidae, Entomobryidae, Reduviidae, Oniscidae, Staphylinidae, Carabidae and Formicidae, represented 82.1% of all individuals collected. The majority of morphospecies was not abundant, 71 (52.6%) were represented by less than 1 individual/tree. Coleopterans accounted for the highest number of morphospecies (43.7%) followed by Araneae (20.0%). The analysis of the arthropod feeding guilds showed prevalence of predatory/hematophagous ones (36.0%). Arthropod richness and abundance presented smaller values for periurban environment. The number of bird nests presented positive correlation with abundance and richness; this was not found when considering the measurements of the palm trees. The importance of M. flexuosa for the maintenance of the arthropod fauna of the "veredas" in Cerrado biome is discussed.  相似文献   

17.
The first step to understanding the species present in a particular area is to perform inventory and assemblage studies. To obtain a species inventory, it is important to determine parameters such as species richness and relative abundance. This information can be useful for future studies and decision-making purposes in the conservation area. Despite the fundamental role of the terrestrial Heteroptera in ecosystems, they remain poorly known. We expected that the terrestrial Heteroptera species assemblage would be strongly associated with plant communities. Presently, 840 samples were collected in northern Argentine Patagonia during two years, 2013 and 2014. A total of 1950 adults of terrestrial Heteroptera belonging to 12 families, 32 species, and 8 morphospecies were found. Various statistical techniques were applied to correct the observed data for undersampling bias. These suggested that the lower boundary of the summer Heteroptera species richness in northern Patagonia was about 44–54 species. We concluded that the high regional habitat heterogeneity along the west-to-east and south-to-north gradients was paralleled by the turnover of Heteroptera. However, the Patagonian steppe shared a high number of species with the Monte and Subantarctic provinces. The suction sampling technique is an efficient technique to collect Heteroptera in environments with different plant structure and should thus be used in a complementary way with the sweeping technique.  相似文献   

18.
Habitat structure determines spider diversity in highland ponds   总被引:1,自引:0,他引:1  
Wetlands (e.g. ponds, meadows) can be found in many landscapes, playing an important role in maintaining regional biodiversity and supporting heterogeneous communities. Spiders are diversified predators that are highly influenced by changes in plant community structure, heterogeneous habitats sustain high spider diversity and abundance. We investigated the characteristics of spider biodiversity in ponds with different habitat structures, by examining patterns across habitats of ponds with different vegetation levels. Sampling took place in four occasions over a year. We compared spider abundance, species richness and composition among ponds including distinct vegetation variables, related to life form, type of leaves, coverage and height. Overall 1174 individuals (194 adults) of 11 families and 37 morphospecies were sampled. We found mostly expected differences in the manner that communities were structured between different habitats. Thus, higher variability of abundance was explained for higher habitat structure of ponds. We also found differences in species composition between ponds with low emergent vegetation and higher habitat structures. Additionaly, spiders were consistently structured more by turnover than nestedness components, with a greater beta diversity of web-builders. Our results suggest varying levels of habitat structures and species substitution shape pond spider communities, depending on habitat heterogeneity and spider guild. Those findings demonstrate the clear role of spatial habitat structure, with more spider species preferring to build webs or actively hunt at vegetated environments on ponds.  相似文献   

19.
Geographic variation in the outcome of interspecific interactions may influence not only the evolutionary trajectories of species but also the structure of local communities. We investigated this community consequence of geographic variation for a facultative mutualism between ants and wild cotton (Gossypium thurberi). Ants consume wild cotton extrafloral nectar and can protect plants from herbivores. We chose three sites that differed in interaction outcome, including a mutualism (ants provided the greatest benefits to plant fitness and responded to manipulations of extrafloral nectar), a potential commensalism (ants increased plant fitness but were unresponsive to extrafloral nectar), and a neutral interaction (ants neither affected plant fitness nor responded to extrafloral nectar). At all sites, we manipulated ants and extrafloral nectar in a factorial design and monitored the abundance, diversity, and composition of other arthropods occurring on wild cotton plants. We predicted that the effects of ants and extrafloral nectar on arthropods would be largest in the location with the mutualism and weakest where the interaction was neutral. A non-metric multidimensional scaling analysis revealed that the presence of ants altered arthropod composition, but only at the two sites in which ants increased plant fitness. At the site with the mutualism, ants also suppressed detritivore/scavenger abundance and increased aphids. The presence of extrafloral nectar increased arthropod abundance where mutual benefits were the strongest, whereas both arthropod abundance and morphospecies richness declined with extrafloral nectar availability at the site with the weakest ant–plant interaction. Some responses were geographically invariable: total arthropod richness and evenness declined by approximately 20% on plants with ants, and extrafloral nectar reduced carnivore abundance when ants were excluded from plants. These results demonstrate that a facultative ant–plant mutualism can alter the composition of arthropod assemblages on plants and that these community-level consequences vary across the landscape.  相似文献   

20.
Because invasions by nonnative plants alter the structure and composition of native plant communities, invasions can alter the function of ecosystems for animals that depend on plants for food and habitat. We quantified effects of an invasion by a nonnative grass on the insect community in grasslands of southeastern Arizona. We sampled insects on 54 1-ha plots established across a gradient of invasion by Lehmann lovegrass (Eragrostis lehmanniana Nees), a perennial species native to southern Africa. Between 2000 and 2004, we captured 94,209 insects representing 13 orders, 91 families, and 698 morphospecies during 2,997 trap nights. Richness of families, richness of morphospecies, and overall abundance of insects decreased as dominance of nonnative grass increased. With every 100 g/m2 increase in biomass of nonnative grass, the average number of insect families decreased by 5%, morphospecies decreased by 6%, and overall abundance decreased by 14%. In areas dominated by nonnative grass, 2 of 8 orders and 6 of 27 families of insects were present less frequently and one family was present more frequently; 5 of 8 orders and 6 of 27 families of insects were less abundant and 3 families were more abundant than in areas dominated by native grasses. As a result, this plant invasion altered the structure of the insect community, which has consequences for animals at higher trophic levels and for ecosystem processes, including decomposition and pollination. Because complete eradication of nonnative plants might be possible only rarely, maintaining stands of native vegetation in invaded areas may be an important practical strategy to foster persistence of animals in grasslands invaded by nonnative plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号