首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introduction of noncanonical amino acids and biophysical probes into peptides and proteins, and total or segmental isotopic labelling has the potential to greatly aid the determination of protein structure, function and protein-protein interactions. To obtain a peptide as large as possible by solid-phase peptide synthesis, native chemical ligation was introduced to enable synthesis of proteins of up to 120 amino acids in length. After the discovery of inteins, with their self-splicing properties and their application in protein synthesis, the semisynthetic methodology, expressed protein ligation, was developed to circumvent size limitation problems. Today, diverse expression vectors are available that allow the production of N- and C-terminal fragments that are needed for ligation to produce large amounts and high purity protein(s) (protein alpha-thioesters and peptides or proteins with N-terminal Cys). Unfortunately, expressed protein ligation is still limited mainly by the requirement of a Cys residue. Of course, additional Cys residues can be introduced into the sequence by site directed mutagenesis or synthesis, however, those mutations may disturb protein structure and function. Recently, alternative ligation approaches have been developed that do not require Cys residues. Accordingly, it is theoretically possible to obtain each modified protein using ligation strategies.  相似文献   

2.
We developed a convenient method for synthesizing homogeneous DNA-protein conjugates. The method is based on expressed protein ligation of intein-fusion proteins and oligonucleotides derivatized with a cysteine. A range of cysteinyl oligonucleotides were synthesized by using a new reagent 1 and were successfully applied to expressed protein ligation to attach the oligonucleotides specifically at the C-terminus of a recombinant protein.  相似文献   

3.
The adaptation of native chemical ligation to protein semisynthesis has become a powerful way to address problems in the analysis of protein structure and function. In particular, the exploitation of nature's inteins in expressed protein ligation is now a standard approach in the study of proteins. Site-specific incorporation of unnatural amino acids, biophysical probes and post-translational modifications in proteins have led to new insights into enzyme mechanisms, protein folding, ion channel function, translation and signaling.  相似文献   

4.
Lew BM  Mills KV  Paulus H 《Biopolymers》1999,51(5):355-362
Protein splicing in trans results in the ligation of two protein or peptide segments linked to appropriate intein fragments. We have characterized the trans-splicing reaction mediated by a naturally expressed, approximately 100-residue N-terminal fragment of the Mycobacterium tuberculosis intein and a synthetic peptide containing the 38 C-terminal intein residues, and found that the splicing reaction was very versatile and robust. The efficiency of splicing was nearly independent of temperature between 4 and 37 degrees C and pH between 6.0 and 7.5, with only a slight decline at pH values as high as 8.5. In addition, there was considerable flexibility in the choice of the C-terminal intein fragment, no significant difference in protein ligation efficiency being observed between reactions utilizing the N-terminal fragment and either the naturally expressed 107-residue C-terminal portion of the intein, much smaller synthetic peptides, or the 107-residue C-terminal intein fragment modified by fusion of a maltose binding protein domain to its N-terminus. The ability to use different types of the C-terminal intein fragments and a broad range of reaction conditions make protein splicing in trans a versatile tool for protein ligation.  相似文献   

5.
Investigations of protein folding have largely involved studies using disulfide-containing proteins, as disulfide-coupled folding of proteins permits the folding intermediates to be trapped and their conformations determined. Over the last decade, a combination of new biotechnical and chemical methodology has resulted in a remarkable acceleration in our understanding of the mechanism of disulfide-coupled protein folding. In particular, expressed protein ligation, a combination of native chemical ligation and an intein-based approach, permits specifically labeled proteins to be easily produced for studies of protein folding using biophysical methods, such as NMR spectroscopy and X-ray crystallography. A method for regio-selective formation of disulfide bonds using chemical procedures has also been established. This strategy is particularly relevant for the study of disulfide-coupled protein folding, and provides us not only with the native conformation, but also the kinetically trapped topological isomer with native disulfide bonds. Here we review recent developments and applications of biotechnical and chemical methods to investigations of disulfide-coupled peptide and protein folding. Chemical additives designed to accelerate correct protein folding and to avoid non-specific aggregation are also discussed.  相似文献   

6.
Chemical protein synthesis   总被引:3,自引:0,他引:3  
Since the mid-1990s, chemical synthesis has emerged as a powerful technique for the study of structure/function relationships in proteins. During the review period, the applicability of chemical protein synthesis techniques has been significantly broadened by increases in the size of synthetically accessible proteins through two new techniques: solid-phase protein synthesis and expressed protein ligation. Also in the period under review, synthetic access to novel classes of proteins has been established, including metalloproteins with tuned properties and integral membrane proteins.  相似文献   

7.
Evans TC  Xu MQ 《Biopolymers》1999,51(5):333-342
Inteins are naturally occurring proteins that are involved in the precise cleavage and formation of peptide bonds in a process known as protein splicing. Genetic engineering has allowed the controllable cleavage of peptide bonds at either the N- or C-terminus of the intein. Inteins displaying controllable cleavage have been used in the isolation of bacterially expressed proteins possessing either a C-terminal thioester or an N-terminal cysteine. The specific placement of these reactive groups has allowed either protein-protein or protein-peptide condensation through a native peptide bond. This review describes the methods used to specifically generate these reactive groups on bacterially expressed proteins and some applications of this technique, known as intein-mediated protein ligation. Furthermore, a versatile two intein (TWIN) system will be described which enables the circularization and polymerization of bacterially expressed proteins or peptides.  相似文献   

8.
Intein-mediated protein ligation is a recently developed method that enables the C-terminal labeling of proteins. This technique requires a correctly folded intein mutant that is fused to the C-terminus of a target protein to create a thioester, which allows the ligation of a peptide with an N-terminal cysteine (1, 2). Here we describe the establishment of this method for the labeling, under denaturing conditions, of target proteins that are expressed insolubly as intein fusion proteins. A GFPuv fusion protein with the Mycobacterium xenopi gyrA intein was expressed in inclusion bodies in Escherichia coli and initially used as a model protein to verify intein cleavage activity under different refolding conditions. The intein showed activity after refolding in nondenaturing and slightly denaturing conditions. A construct of the same intein with an anti-neutravidin single-chain antibody was also expressed in an insoluble form. The intein-mediated ligation was established for this single chain antibody-intein fusion protein under denaturing conditions in 4 M urea to prevent significant precipitation of the fusion protein during the first refolding step. Under optimized conditions, the single-chain antibody was labeled with a fluorescent peptide and used for antigen screening on a biochip after final refolding. This screening procedure allowed the determination of binding characteristics of the scFv for avidin proteins in a miniaturized format.  相似文献   

9.
Interactions between G proteins and GPCRs are fundamental for transmitting signals for a multitude of physiologic responses. Little is known regarding the protein-protein interface between the G protein and the receptor, much less the mechanisms for receptor activation of G proteins. Here, we will describe how expressed protein ligation will aid in the study of protein-protein interactions between semi-synthetic G alpha subunits and GPCRs.  相似文献   

10.
Szewczuk LM  Tarrant MK  Sample V  Drury WJ  Zhang J  Cole PA 《Biochemistry》2008,47(39):10407-10419
Serotonin N-acetyltransferase [arylalkylamine N-acetyltransferase (AANAT)] is a key circadian rhythm enzyme that drives the nocturnal production of melatonin in the pineal. Prior studies have suggested that its light and diurnal regulation involves phosphorylation on key AANAT Ser and Thr residues which results in 14-3-3zeta recruitment and changes in catalytic activity and protein stability. Here we use protein semisynthesis by expressed protein ligation to systematically explore the effects of single and dual phosphorylation of AANAT on acetyltransferase activity and relative affinity for 14-3-3zeta. AANAT Thr31 phosphorylation on its own can enhance catalytic efficiency up to 7-fold through an interaction with 14-3-3zeta that lowers the substrate K m. This augmented catalytic profile is largely abolished by double phosphorylation at Thr31 and Ser205. A possible basis for this difference is the dual anchoring of doubly phosphorylated AANAT via one 14-3-3zeta heterodimer. We have developed a novel solution phase assay for accurate K D measurements of 14-3-3zeta-AANAT interaction using 14-3-3zeta fluorescently labeled with rhodamine by expressed protein ligation. We have also generated a doubly fluorescently labeled AANAT which can be used to assess the stability of this protein in a live cell, real-time assay by fluorescence resonance energy transfer measured by microscopic imaging. These studies offer new insights into the molecular basis of melatonin regulation and 14-3-3zeta interaction.  相似文献   

11.
Li YM  Yang MY  Huang YC  Li YT  Chen PR  Liu L 《ACS chemical biology》2012,7(6):1015-1022
Expressed protein ligation bridges the gap between synthetic peptides and recombinant proteins and thereby significantly increases the size and complexity of chemically synthesized proteins. Although the intein-based expressed protein ligation method has been extensively used in this regard, the development of new expressed protein ligation methods may improve the flexibility and power of protein semisynthesis. In this study a new alternative version of expressed protein ligation is developed by combining the recently developed technologies of hydrazide-based peptide ligation and genetic code expansion. Compared to the previous intein-based expressed protein ligation method, the new method does not require the use of protein splicing technology and generates recombinant protein α-hydrazides as ligation intermediates that are more chemically stable than protein α-thioesters. Furthermore, the use of an evolved mutant pyrrolysyl-tRNA synthetase(PylRS), ACPK-RS, from M. barkeri shows an improved performance for the expression of recombinant protein backbone oxoesters. By using HdeA as a model protein we demonstrate that the hydrazide-based method can be used to synthesize proteins with correctly folded structures and full biological activity. Because the PylRS-tRNACUAPyl system is compatible with both prokaryotic and eukaryotic cells,the strategy presented here may be readily expanded to manipulate proteins produced in mammalian cells. The new hydrazide-based method may also supplement the intein-based expressed protein ligation method by allowing for a more flexible selection of ligation site.  相似文献   

12.

Background

Protein transduction is safer than viral vector-mediated transduction for the delivery of a therapeutic protein into a cell. Fusion proteins with an arginine-rich cell-penetrating peptide have been produced in E. coli, but the low solubility of the fusion protein expressed in E. coli impedes the large-scale production of fusion proteins from E. coli.

Results

Expressed protein ligation is a semisynthetic method to ligate a bacterially expressed protein with a chemically synthesized peptide. In this study, we developed expressed protein ligation-based techniques to conjugate synthetic polyarginine peptides to Cre recombinase. The conjugation efficiency of this technique was higher than 80%. Using this method, we prepared semisynthetic Cre with poly-L-arginine (ssCre-R9), poly-D-arginine (ssCre-dR9) and biotin (ssCre-dR9-biotin). We found that ssCre-R9 was delivered to the cell to a comparable level or more efficiently compared with Cre-R11 and TAT-Cre expressed as recombinant fusion proteins in E. coli. We also found that the poly-D-arginine cell-penetrating peptide was more effective than the poly-L-arginine cell-penetrating peptide for the delivery of Cre into cell. We visualized the cell transduced with ssCre-dR9-biotin using avidin-FITC.

Conclusions

Collectively, the results demonstrate that expressed protein ligation is an excellent technique for the production of cell-permeable Cre recombinase with polyarginine cell-penetrating peptides. In addition, this approach will extend the use of cell-permeable proteins to more sophisticated applications, such as cell imaging.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0126-z) contains supplementary material, which is available to authorized users.  相似文献   

13.
ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation.  相似文献   

14.
Understanding the structure and function of protein complexes and multi‐domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon S ortase‐mediated and Na tive chemical ligation using synthetic Pe ptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps – sortase‐mediated and native chemical ligation – together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Expressed protein ligation (EPL) is a useful method for the native chemical ligation of proteins with other proteins or peptides. This study assessed the practicability of EPL in the preparation of fusion proteins of enhanced green fluorescent protein (EGFP) with chemically synthesized cell-penetrating peptides (CPPs) for intracellular delivery. Using intein-mediated purification with an affinity chitin-binding tag (IMPACT) system, the thioester of EGFP (EGFP-SR) was prepared. Optimization of the ligation of EGFP-SR with arginine 12-mer (R12) produced the fusion protein in high yield. The EPL procedure also allows the preparation of EGFP-R12 containing a low level of endotoxin (ET), via the satisfactory ET removal of EGFP-SR prior to ligation with the R12 peptide. Fusion proteins of EGFP with R12 and the d-isomer of R12 prepared by EPL showed similar levels of cellular uptake compared to the fusion protein directly expressed in Escherichiacoli.  相似文献   

16.
Determination of protein oligomerization state can be technically challenging. We have combined the methods of expressed protein ligation (EPL) and fluorescence resonance energy transfer (FRET) for the analysis of protein homo-oligomerization states. We have attached fluorescein (donor) and rhodamine (acceptor) chromophores via dipeptide linkages to the C-termini of three recombinant proteins and examined the potential for FRET between mixtures of these semisynthetic proteins. The known protein dimer (glutathione S-transferase) showed evidence of FRET and the known protein monomer (SH2 domain phosphatase-1) did not display FRET. Using this method, the previously uncharacterized circadian rhythm enzyme, serotonin N-acetyltransferase, displayed significant FRET, indicating its likely propensity for dimerization or more complex oligomerization. These results establish the potential of the union of EPL and FRET in the analysis of protein-protein interactions and provide insight into the unusual enzymatic behavior of a key circadian rhythm enzyme.  相似文献   

17.
天然蛋白质在生物体内主要以线性形式存在,由于多数蛋白质(酶)热稳定性较差,制约了其在工业催化、食品制造、医药领域的高效应用。自然界中发现的天然环肽类物质具有首尾相连的环化结构,使蛋白质具有较高的稳定性,为改造酶的结构、提高其热稳定性及拓宽其应用范围提供了新思路。本文根据国内外在蛋白质环化领域的新动态并结合本实验室的研究,系统介绍了内含肽介导的蛋白质反式剪接、表达蛋白连接、转肽酶催化的转肽作用等几种传统蛋白质环化方法,着重介绍了基于新型超强分子粘合剂Spy Tag/Spy Catcher介导的蛋白质环化的研究。  相似文献   

18.
Alterations to the global levels of certain types of post-translational modifications (PTMs) are commonly observed in neurodegenerative diseases. The net influence of these PTM changes to the progression of these diseases can be deduced from cellular and animal studies. However, at the molecular level, how one PTM influences a given protein is not uniform and cannot be easily generalized from systemic observations, thus requiring protein-specific interrogations. Given that protein aggregation is a shared pathological hallmark in neurodegeneration, it is important to understand how these PTMs affect the behavior of amyloid-forming proteins. For this purpose, protein semisynthesis techniques, largely via native chemical and expressed protein ligation, have been widely used. These approaches have thus far led to our increased understanding of the site-specific consequences of certain PTMs to amyloidogenic proteins’ endogenous function, their propensity for aggregation, and the structural variations these PTMs induce toward the aggregates formed.  相似文献   

19.
Xenopus nuclear factor XNF7, a maternally expressed protein, functions in patterning of the embryo. XNF7 contains a number of defined protein domains implicated in the regulation of some developmental processes. Among these is a tripartite motif comprising a zinc-binding RING finger and B-box domain next to a predicted alpha-helical coiled-coil domain. Interestingly, this motif is found in a variety of protein including several proto-oncoproteins. Here we describe the solution structure of the XNF7 B-box zinc-binding domain determined at physiological pH by 1H NMR methods. The B-box structure represents the first three-dimensional structure of this new motif and comprises a monomer have two beta-strands, two helical turns and three extended loop regions packed in a novel topology. The r.m.s. deviation for the best 18 structures is 1.15 A for backbone atoms and 1.94 A for all atoms. Structure calculations and biochemical data shows one zinc atom ligated in a Cys2-His2 tetrahedral arrangement. We have used mutant peptides to determine the metal ligation scheme which surprisingly shows that not all of the seven conserved cysteines/histidines in the B-box motif are involved in metal ligation. The B-box structure is not similar in tertiary fold to any other known zinc-binding motif.  相似文献   

20.
Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation   总被引:1,自引:0,他引:1  
We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号