首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 154 毫秒
1.
本文用吸收光谱和可见圆二色谱研究了不同浓度的山莨菪碱对紫膜中菌紫质结构的影响,并设计了用不同浓度的去垢剂Triton X-100作为脂环境的扰动剂,研究山莨菪碱对菌紫质的影响与膜脂关系的实验.结果表明山莨菪碱不仅影响菌紫质分子本身的构象变化而且扰动了菌紫质分子之间的激子偶联作用.通过吸收差光谱技术表明山莨菪碱对菌紫质结构的影响与膜脂密切相关并指出紫膜中菌紫质的三体结构对膜功能的贡献是不容忽视的.  相似文献   

2.
本实验用人工双分子平板膜系统(BLM)测量了紫膜碎片和在DMPC脂质襄泡膜中的单体菌紫质分子的光电响应以及与温度的关系(处理温度17℃至31℃).温度对紫膜碎片的光电响应影响不大,但对单体菌紫质分子的光电响应有明显影响.用园二色(CD)方法相应地观察了温度对紫膜碎片和单体菌紫质分子在可见波长范围内的CD谱的影响 同样观察到温度对单体菌紫质分子的CD谱有明显影响.两者的影响很可能与脂质襄泡中DMPC的相变温度有关.  相似文献   

3.
菌紫质(BR)是嗜盐菌紫膜中的唯一蛋白质,野生型的BR分子含有248个氨基酸残基,其中一个视黄醛通过希夫碱基连结在第216位赖氨酸上,它具有质子泵的功能.光照下,BR进行光循环,光循环又与质子泵过程相关联.菌紫质的结构和功能方面的研究已有很大进展,但其光循环途径和质子泵的机理还不太清楚.文章概述了近年来对菌紫质结构,光循环和质子泵机理研究的进展,尤其对争论较大的菌紫质光循环途径的四类模型作了较详细的介绍.  相似文献   

4.
CHAPS对M_(412)的动力学和共振拉曼光谱的影响   总被引:1,自引:1,他引:0  
研究了表面活性剂CHAPS对紫膜中菌紫质在光循环过程中M_(412)的衰减速率及质子泵功能的影响.光循环中间体M_(412)快、慢衰减组分的衰减速率及质子衰减速率均受到CHAPS的影响,综合激光拉曼光谱对M_(412)和其它光循环中间体相对含量的测定,表明CHAPS对紫膜的影响是通过影响其膜脂完整的液晶结构,而使紫膜光循环动力学过程及质子泵功能发生变化的.  相似文献   

5.
用吸收光谱和圆二色谱的方法研究了蜂毒素与嗜血菌紫膜的相互作用机理.通过与三种在结构和电荷上不同的表面活性剂与紫膜的作用相比较,可以年出蜂毒作为带正电荷的分子与同样带正电的表面活性剂DTAB在引起紫膜凝聚方面表现相同;但在对紫膜可见光区的吸收光谱和圆二色谱的影响上却与具有刚性结构的CHAPS相似,表明蜂毒可在紫膜表面以一种刚性较大的构象(如α螺旋)存在,不能进入膜蛋白流水区的深层.另外,从紫膜-Triton-蜂毒混合作用体系的研究中得到如下推测:蜂毒与Triton竞争菌紫质分子周围的结合位点,可排斥位于菌紫质周围的Triton分子.表明蜂毒具有比Triton更强的与菌紫质的亲和力,从而提供了支持蜂毒分子存在与膜蛋白-菌紫质的直接相互作用的有力证据.  相似文献   

6.
用化学修饰研究了菌紫质(BR)的结构和功能的变化。用氮氧自由基分别对赖氨酸和丝氨酸进行修饰,研究结果表明在圆二色谱上(CD谱),与天然紫膜样品比较,两种自由基分别修饰赖氨酸(Lys)和丝氨酸(Ser)残基24小时后的CD谱中均只有负峰,分别在596nm和602nm,535nm的正峰已消失,72小时后535nm的正峰部分地恢复,但120小时后均未见进一步恢复。与未修饰的紫膜相比,两种自由基修饰的紫膜在Raman光谱上观察到中间体M412的相对量要明显增加。本文对这二种化学修饰引起的BR结构和功能变化进行了初步讨论。  相似文献   

7.
实验证实,在适当的酸度调节下暗适应菌紫质(BR)的光致变色反应由B→蓝膜→P→Q→B的循环转换构成。在无光照下,B、Q态在中性介质中,蓝膜、P态在酸性介质中均呈高化学稳定性;蓝膜→P和Q→B的态转换须分别用650nm和400nm可见光激励,用紫外-可见光谱对两个光化学过程的动力学特性进行监测,证实它们均为一级反应。菌紫质的四个稳态在可见光区具有不同的特征吸收波长,在信息记录方面可望有一定应用前景。  相似文献   

8.
本文介绍了紫膜细菌视紫红质的微观结构,质子泵功能和光循环过程,及其菌紫质分子中发色团和蛋白质相互作用(结合位点)的几种光谱研究,最后讨论了菌紫质分子原初事件量子产率的双重性和相应的分子动力学模型。  相似文献   

9.
蜂毒突变体对紫膜质子泵功能的影响   总被引:1,自引:0,他引:1  
具有光驱动质子泵功能的嗜盐菌紫膜是一种被广泛研究的生物膜系统。利用毫秒级闪光动力学谱仪研究蜂毒不同突变体对紫膜质子泵功能的影响。实验采用对硝基苯酚(p-nitrophenol)作为PH敏感染料来研究紫膜蛋白-菌紫质(Bacteriorhodopsin,简称)的光反应和质子泵功能。在初步的实验中发现,在一定的温度范围内,光循环过程随着温度的升高而加快,质子泵功能却基本保持不变。另外,由于蜂毒突变体具有不同的插膜特性和不同的电荷量,通过比较它们对BR质子泵功能的影响,揭示了蜂毒小肽C端和N端的不同带电状态对质子泵功能所起的作用不同。实验结果有力地证实了蜂毒或其突变体与菌紫质蛋白具有直接的相互作用,这种相互作用的强弱与蜂毒突变体电荷的多少密切相关  相似文献   

10.
pH对菌紫质分子的旋转运动和光电响应的影响   总被引:4,自引:4,他引:0  
用闪光诱导瞬间二向色性方法测量了不同pH条件下的菌紫质分子在脂质囊泡中的旋转扩散运动.在人工平扳膜(BLM)系统中测量了不同pH条件下菌紫质分子的光电响应.在pH3至8.3的范围内没有明显观察到菌紫质分子在膜中旋转运动上的差别.pH低于3时,菌紫质分子旋转运动受到影响;pH高于11时,观察不到旋转扩散运动.在BLM系统中测量了pH2到pH11范围内菌紫质分子的光电响应信号,随着pH的增加,无论紫膜碎片还是单体菌紫质分子的光电响应逐渐由照光后快速正信号并快速衰减及撤光时的快速负信号并逐渐衰减变成慢的正信号.pH高于9.4时,单体菌紫质分子的光电响应信号由正变负,pH高于11时,观察不到信号.  相似文献   

11.
In this study, vibrational circular dichroism (VCD) spectroscopy was employed for the first time to study the bilirubin (BR) interaction with model membranes and models for membrane proteins. An enantioselective interaction of BR with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and sphingomyelin (SPM) liposomes was observed by VCD and electronic circular dichroism (ECD) complemented by absorption and fluorescence spectroscopy. The M-form of BR was preferentially recognized in the BR/DMPC system at concentration above 1 × 10− 4 M, for lower concentrations the P-form of BR was recognized by the DMPC liposomes. The VCD spectra also showed that the SPM liposomes, which represent the main component of nerve cell membrane, were significantly more disturbed by the presence of BR than the DMPC liposomes—a stable association with a strong VCD signal was observed providing the explanations for the supposed BR neurotoxicity. The effect of time and pH on the BR/DMPC or SPM liposome systems was shown to be essential while the effect of temperature in the range of 15–70 °C was negligible demonstrating the surprisingly high temperature stability of BR when interacting with the studied membranes. The influence of a membrane protein was tested on a model consisting of poly-l-arginine (PLAG) bound in the α-helical form to the surface of 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) liposomes and sodium dodecyl sulfate micelles. VCD and also ECD spectra showed that a variety of BR diastereoisomers interacted with PLAG in such systems. In a system of PLAG with micelles composed of sodium dodecyl sulfate, the M-form of bound BR was observed.  相似文献   

12.
用闪光诱导瞬间二向色性方法测量了蔗糖和甘油对菌紫质(BR)分子在脂质泡中的旋转扩散运动的影响。结果表明脂质囊泡本身在悬浮液中的运动并不会影响BR分子在膜中的旋转运动的测量。蔗糖和甘油对BR旋转运动的影响在相变温度以上和相变温度以下是不同的,相变温度以下的主要作用是相分离,使运动减慢,相变温度以上的作用可能是脂的分散,使运动加快。  相似文献   

13.
Experiments have been performed to examine any influence of the chromophore retinal in bacteriorhodopsin (BR) on the passive proton/hydroxide ion flux through this integral membrane protein. BR was reconstituted into dimyristoylphosphatidylcholine (DMPC)-phosphatidylserine or DMPC-dimyristoylphosphatidylglycerol unilamellar vesicles with molar lipid to protein ratios ranging from 30 to 150. The entrapped fluorescence dye pyranine served as a reliable indicator of the internal proton concentration. Transmembrane pH-gradients were quickly established across the vesicular membrane and the kinetics of the induced fluorescence changes were compared for vesicles with incorporated native BR, BR bleached to the chromophore-free protein bacterioopsin, and BR regenerated from bacterioopsin with all-trans-retinal, respectively. For aggregated protein molecules, the H+/OH- diffusion across bacterioopsin was always considerably faster than that through the protein containing covalently bound retinal. The decay rate of the imposed pH-gradient was 4.4-9.1 and 2.0-5.1 times slower for native and regenerated BR, respectively, as compared to bacterioopsin. Stepwise regeneration of bacterioopsin with all-trans-retinal revealed a linear dependence of the predominant delta pH-decay time on the degree of regeneration. Essentially the same observations were made with monomeric protein molecules in vesicular lipid membranes. The results demonstrate that the chromophore retinal itself blocks the H+/OH- conducting pathway across the transmembrane protein BR or indirectly controls this path by inducing conformational changes in the protein upon binding.  相似文献   

14.
The mechanism whereby bacteriorhodopsin (BR), the light driven proton pump from the purple membrane of Halobacterium halobium, arranges in a 2D-hexagonal array, has been studied in bilayers containing the protein, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and various fractions of H. halobium membrane lipids, by freeze fracture electron microscopy and examination of optical diffractograms of the micrographs obtained. Electron micrographs of BR/DMPC complexes containing the entire polar lipid component of H. halobium cell membranes or the total lipid component of the purple membrane, with a protein-to-total lipid molar ratio of less than 1:50 and to which 4 M NaCl had been added, revealed that trimers of BR formed into an hexagonal 2D-array similar to that found in the native purple membrane, suggesting that one or more types of the purple membrane polar lipids are required for array formation. To support this suggestion, bacteriorhodopsin was purified free of endogenous purple membrane lipids and reconstituted into lipid bilayer complexes by detergent dialysis. The lipids used to form these complexes are 1,2-dimyristoyl-sn-glycerol-phosphocholine (DMPC) as the major lipid and, separately, each of the individual lipid types from the H. halobium cell membranes, namely 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol 1'-phosphate (DPhPGP), 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol 1'-sulphate (DPhPGS), 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol (DPhPG) and 2,3-di-O-phytanyl-1-O-[beta-D-Galp-3-sulphate-(1----6)-alpha-D- Manp-(1----2)-alpha-D-Glcp]-sn-glycerol (DPhGLS). When examined by freeze-fracture electron microscopy, only the complexes containing 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol- 1'-phosphate or 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol-1'-sulphate, at high protein density (less than 1:50, bacteriorhodopsin/phospholipid, molar ratio) and to which 4 M NaCl had been added, showed well defined 2D hexagonal arrays of bacteriorhodopsin trimers similar to those observed in the purple membrane of H. halobium.  相似文献   

15.
Arora A  Williamson IM  Lee AG  Marsh D 《Biochemistry》2003,42(17):5151-5158
Phospholamban is a cardiac regulatory protein that, in its monomeric form, inhibits the Ca(2+)-ATPase. Lipid-protein interactions with a synthetic variant of phospholamban, in which all cysteine residues are replaced with alanine, have been studied by spin-label electron spin resonance (ESR) in different lipid host membranes. Both the stoichiometry and selectivity of lipid interactions were determined from the two-component ESR spectra of phospholipid species spin-labeled on the 14 C atom of the sn-2 chain. The lipid stoichiometry is determined by the oligomeric state of the protein and the selectivity by the membrane disposition of the positively charged residues in the N-terminal section of the protein. In dimyristoylphosphatidylcholine (DMPC) membranes, the stoichiometry (N(b)) is 7 lipids/monomer for the full-length protein and 4 for the transmembrane section (residues 26-52). These stoichiometries correspond to the dimeric and pentameric forms, respectively. In palmitoyloleoylphosphatidylcholine, N(b) = 4 for both the whole protein and the transmembrane peptide. In negatively charged membranes of dimyristoylphosphatidylglycerol (DMPG), the lipid stoichiometry is N(b) = 10-11 per monomer for both the full-length protein and the transmembrane peptide. This stoichiometry corresponds to monomeric dispersion of the protein in the negatively charged lipid. The sequence of lipid selectivity is as follows: stearic acid > phosphatidic acid > phosphatidylserine = phosphatidylglycerol = phosphatidylcholine > phosphatidylethanolamine for both the full-length protein and the transmembrane peptide in DMPC. Absolute selectivities are, however, lower for the transmembrane peptide. A similar pattern of lipid selectivity is obtained in DMPG, but the absolute selectivities are reduced considerably. The results are discussed in terms of the integration of the regulatory species in the lipid membrane.  相似文献   

16.
High-pressure Fourier transform infrared (FT-IR) spectroscopy was used to study the effects of a local anesthetic, tetracaine, on the structural and dynamic properties of lipids in model membranes. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (DHPC) in the absence and presence of a physiological concentration of cholesterol (30 mol %). The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results indicate that the effects of tetracaine on the structure of pure DMPC bilayers in the gel state are dependent on the state of charge of the anesthetic. The uncharged tetracaine disorders the lipid acyl chains while the charged form induces the formation of an interdigitated gel phase. The presence of cholesterol in the latter system prevents the formation of the interdigitated phase, whereas in the former system it disorders the lipid acyl chains in the gel state. Moreover, it is shown that the addition of uncharged tetracaine to interdigitated DHPC bilayers does not alter the interdigitated state of the hydrocarbon chains.  相似文献   

17.
Quercetin (QCT) is an important bioactive natural compound found in numerous edible plants. Since the lipid bilayer represents an essential compound of the cell membrane, QCT's direct interaction with this structure is of great interest. Therefore, we proposed to study the effects of QCT on DMPC liposomes containing cholesterol (Chol), and for this purpose Laurdan fluorescence was used. As a fluorescent probe, Laurdan is able to detect changes in membrane phase properties. When incorporated in lipid bilayers, Laurdan emits from two different excited states, a non-relaxed one when the bilayer packing is tight and a relaxed state when the bilayer packing is loose. The main tool for quantifying QCT's effects on phospholipid membranes containing Chol has been the analysis, the decomposition of Laurdan emission spectra in sums of two Gaussian functions on energy. This kind of approach has allowed good analysis of the balance between the two emitting states of Laurdan. Our results show that both Laurdan emission states are present to different extents in a wide temperature range for DMPC liposomes with Chol. QCT is decreasing the phase transition temperature in pure DMPC liposomes as proved by generalized polarization (GP) values. QCT also quenches Laurdan fluorescence, depending on the temperature and the presence of Chol in the membrane. Stern-Volmer constants were calculated for different lipid membrane compositions, and the conclusion was that the relaxed state favors the nonradiative transitions of the fluorophore.  相似文献   

18.
The carboxyl terminus of the type-1 angiotensin II receptor (AT(1A)) is a focal point for receptor activation and deactivation. Synthetic peptides corresponding to the membrane-proximal, first 20 amino acids of the carboxyl terminus adopt an alpha-helical conformation in organic solvents, suggesting that the secondary structure of this region may be sensitive to hydrophobic environments. Using surface plasmon resonance, immobilized lipid chromatography, and circular dichroism, we examined whether this positively charged, amphipathic alpha-helical region of the AT(1A) receptor can interact with lipid components in the cell membrane and thereby modulate local receptor attachment and structure. A synthetic peptide corresponding to the proximal region of the AT(1A) receptor carboxyl terminus (Leu(305) to Lys(325)) was shown by surface plasmon resonance to bind with high affinity to the negatively charged lipid, dimyristoyl L-alpha-phosphatidyl-DL-glycerol (DMPG), but poorly to the zwitterionic lipid, dimyristoyl L-alpha-phosphatidylcholine (DMPC). In contrast, a peptide analogue possessing substitutions at four lysine residues (corresponding to Lys(307,308,310,311)) displayed poor association with either lipid, indicating a crucial anionic component to the interaction. Circular dichroism analysis revealed that both the wild-type and substituted peptides possessed alpha-helical propensity in methanol and trifluoroethanol, while the wild-type peptide also adopted partially inserted helical structure in DMPG and DMPC liposomes. In contrast, the substituted peptide exhibited spectra that suggested the presence of beta-sheet and alpha-helical structure in both liposomes. Immobilized lipid chromatography was used to characterize the hydrophobic component of the membrane interaction, and the results demonstrated that hydrophobic and electrostatic interactions mediated the binding of the wild-type peptide but that the substituted peptide bound to the model membranes mainly via hydrophobic forces. We propose that, in intact AT(1A) receptors, the proximal carboxyl terminus associates with the cytoplasmic face of the cell membrane via a high-affinity, anionic phospholipid-specific tethering that serves to increase the amphipathic helicity of this region. Such associations may be important for receptor function and common for G protein-coupled receptors.  相似文献   

19.
Massey JB  Pownall HJ 《Biochemistry》2005,44(43):14376-14384
Oxygenated derivatives of cholesterol, oxysterols, have different physicochemical properties and three-dimensional shapes. The kinetics of microsolubilization of dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles by apolipoprotein A-I (apoA-I) to form discoidal high-density lipoproteins (rHDL) was dramatically affected by oxysterol chemical structure. Under the experimental conditions of varying oxysterol chemical structure, sterol concentration, and the lipid phase state of DMPC, the kinetics varied over 3 orders of magnitude. Some oxysterols behaved similarly to cholesterol and increased the rate of microsolubilization; however, they were not as effective as cholesterol. Other oxysterols greatly inhibited this process. In general, there was no correlation of the rates with membrane fluidity as measured by fluorescence polarization. The rate of DMPC microsolubilization by apoA-I is highly dependent upon the presence of lattice defects in the membrane surface that occur due to imperfect packing of coexisting lipid phases. The differential ability of various oxysterols to induce the formation of an ordered lipid phase is the probable basis for their effects on the rates of DMPC microsolubilization. There was no effect of oxysterol chemical structure on the structure of the equilibrium rHDL products; however, there was a dramatic effect of sterol concentration on rHDL particle size. Different oxysterols regulate the kinetics of apoA-I membrane association by altering structural microheterogeneity at the membrane surface. However, once the kinetic barrier is overcome, the particle sizes of rHDL products formed are determined solely by the amount of sterol presence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号