首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
RNA介导的DNA甲基化作用(RNA-directed DNA Methylation,RdDM)是首次在植物中发现的基因组表观修饰现象,RdDM通过RNA-DNA序列相互作用直接导致DNA甲基化。植物中的RdDM和siRNA介导的mRNA降解现象,都是通过RNA使序列特异性基因发生沉默,它们对于植物的染色体重排、抵御病毒感染、基因表达调控和发育的许多过程起到了非常重要的作用。在植物中有很多的文献报道RdDM现象,但是对于其具体调控机理还不是很清楚。这里对RNA介导的植物DNA甲基化的基本特征进行了简要概述,主要对RdDM机理的研究进展进行了综述,其中包括RdDM过程中的DNA甲基转移酶的种类及其作用机理,DNA甲基化与染色质修饰之间的关系,以及与RdDM相关的重要蛋白质的研究等。在植物中,转录和转录后水平都可能发生RdDM,诱发基因沉默,前者常涉及靶基因启动子的甲基化,后者则牵涉到编码区的甲基化。RdDM的发生依赖于RNAi途径中相似的siRNA和酶,如DCL3、RdR2、SDE4和AGO4。植物中至少含有三类DNA甲基转移酶DRM1/2、MET1和CMT3,其作用部位是与RNA同源的DNA区域中的所有胞嘧啶,而组蛋白H3第九位赖氨酸的甲基化影响着胞嘧啶的甲基化。  相似文献   

2.
作为一种重要的组蛋白修饰形式,H2B的单泛素化(uH2B)广泛地参与DNA复制、基因的表达与转录、DNA损伤修复及异染色质维持等生物学事件.在裂殖酵母中,H2B的单泛素化发生在其羧基端的119位赖氨酸(K119),并依赖于Rhp6/Bre1泛素连接酶复合体.研究表明,uH2B通过破坏H2A/H2B二聚体的结构促进mRNA在转录过程中的延伸,同时促进H3K4的三甲基化激活基因的表达及参与DNA损伤修复.本研究发现,Rhp6能够对核糖核苷酸还原酶抑制基因(Spd1)位点进行活跃的染色质修饰,促进H2B的单泛素化并抑制基因表达,从而促进dNTP的合成并调控DNA复制及损伤修复.重要的是,本研究发现,该过程不依赖于H3K4而决定于H3K9的三甲基化.同时uH2B直接在DNA双链断裂位点富集,通过改变染色质的结构参与DNA损伤修复,该过程中可能存在其他更为复杂的分子机制.  相似文献   

3.
目的:分析和确认转录因子DLX1在骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)诱导的间充质干细胞C3H10T1/2成骨分化中的作用。方法:首先,BMP9腺病毒感染C3H10T1/2细胞,RT-PCR和Western blot检测DLX1表达变化;随后,利用重组腺病毒技术分别过表达DLX1和RNA干扰(RNA Intenference,RNAi)抑制DLX1的表达,并利用碱性磷酸酶(Alkaline Phosphatase,ALP)染色、钙盐沉积实验(茜素红染色),免疫细胞化学检测骨钙素(osteocalcin,OCN)表达和裸鼠皮下异位成骨实验分析DLX1对于BMP9诱导的C3H10T1/2细胞成骨分化的影响。荧光素酶报告基因实验和Western blot分析DLX1对于BMP9诱导的C3H10T1/2细胞Smad1/5/8信号途径的影响。结果:BMP9可以促进C3H10T1/2细胞中DLX1基因和蛋白表达水平;过表达DLX1在体外可进一步促进BMP9诱导的C3H10T1/2细胞的ALP活性、钙盐沉积以及OCN的表达,过表达DLX1亦可促进BMP9诱导的裸鼠皮下异位成骨;反之,RNAi抑制DLX1表达后,由BMP9诱导的C3H10T1/2细胞的ALP活性、钙盐沉积、OCN表达和裸鼠皮下异位成骨均相应受到抑制。过表达DLX1可进一步增强BMP9诱导的C3H10T1/2细胞中Smad/1/5/8的转录调控活性,RNAi降低DLX1表达则可抑制BMP9诱导Smad/1/5/8的转录调控活性。但是,无论过表达DLX1和RNAi降低DLX1表达均不会对BMP9诱导的Smad/1/5/8磷酸化造成影响。结论:DLX1可以调节BMP9诱导的间充质干细胞C3H10T1/2细胞成骨分化,其调节作用可能是通过影响Smad1/5/8信号的转录调控活性而实现的。  相似文献   

4.
组蛋白赖氨酸甲基化在表观遗传调控中起着关键作用。组蛋白甲基转移酶G9a(又称作常染色质组蛋白赖氨酸N-甲基转移酶2(euchromatic histone-lysine N-methyltransferase 2,EHMT2))含经典的SET结构域,是常染色质主要的甲基转移酶之一,可以甲基化组蛋白H3K9、H3K27和H1bK26等。此外,G9a也可以直接甲基化一些非组蛋白,并与DNA甲基化密切相关。G9a功能紊乱可以导致胚胎发育异常、免疫系统及神经系统发育障碍、甚至癌症的发生发展。  相似文献   

5.
混合连锁白血病因子4 (mixed lineage leukemia 4, MLL4)是组蛋白H3第4位赖氨酸(H3K4)一种特异的甲基化转移酶,也是COMPASS/Set1-like蛋白复合物中重要成员之一。MLL4蛋白本身及其介导的H3K4甲基化修饰,均能引起染色质结构和功能的改变,调控基因转录与表达。随着近年对MLL4蛋白研究的深入,MLL4基因、MLL4蛋白、蛋白复合物在各组织器官的发育、肿瘤疾病等生理与病理生理过程中的作用逐渐被揭示。本文对MLL4基因、MLL4蛋白特征、生物学功能及其对疾病的影响等方面的研究进展进行综述,以期进一步理解组蛋白甲基化转移酶对基因表达调控的影响及其非酶学依赖的功能,为相关疾病预防和诊治提供新的思路。  相似文献   

6.
PLMT家族成员SET7/9的非组蛋白甲基化作用   总被引:1,自引:0,他引:1  
SET7/9是蛋白赖氨酸甲基化转移酶(protein lysine methyltransferases,PLMTs或PKMTs)家族成员,具有SET结构域。现已发现SET7/9是一种赖氨酸单甲基化转移酶,除了能使组蛋白H3第四位赖氨酸(lysine4 of histone 3,H3K4)单甲基化外,更重要的能使一些转录因子、肿瘤抑制因子、膜相关受体等非组蛋白单甲基化,其甲基化作用主要与蛋白稳定和转录活化有关。该效应受赖氨酸特异性去甲基酶1(lysine specifcdemethylase,LSD1)的抑制。SET7/9与LSD1两者效应的平衡对维持体内活性蛋白质含量、调节基因表达具有重要意义。  相似文献   

7.
RNA干扰与染色质沉默——生物体内精密的网络调控机制   总被引:2,自引:0,他引:2  
基因表达受不同层次的调控.RNA干扰通过产生双链小RNA诱导同源mRNA序列降解,从而在转录后抑制特定基因的表达.最新的研究成果显示:RNA干扰产生的双链小RNA可通过与染色质中的重复序列DNA及组蛋白甲基化酶相互作用,引起组蛋白H3 Lys9的甲基化,进一步与异染色质形成相关蛋白结合,导致染色质沉默.综述了RNA干扰,小RNA,组蛋白修饰,染色质沉默及基因表达调控之间存在着精密的网络调控机制.  相似文献   

8.
高文龙  刘红林 《遗传》2007,29(12):1449-1454
组蛋白甲基化是一种重要的组蛋白共价修饰, 在染色质结构和基因表达的调控过程中起着重要的、多样化的作用。DOT1催化核心球体部位的组蛋白H3第79位赖氨酸(H3K79)使其发生甲基化, 是首个被发现的无SET结构域的组蛋白赖氨酸甲基转移酶, 代表了一类新的组蛋白赖氨酸甲基转移酶。DOT1及H3K79甲基化的特点决定了其可能具有重要的、特殊的生物学功能。文章重点综述了DOT1蛋白的结构及特点, DOT1及H3K79甲基化的生物学功能以及组蛋白泛素化修饰对H3K79甲基化的反式调控。  相似文献   

9.
目的通过比较不同细胞类型之间MafA基因转录起始区的组蛋白修饰差异,探讨组蛋白修饰对MafA基因转录表达的作用。方法采用染色质免疫共沉淀-实时定量PCR法检测小鼠胰岛素瘤β细胞(NIT-1)、NIH小鼠成纤维细胞(NIH3T3)及小鼠胚胎干细胞(mES)三者中的MafA和MLH1基因转录起始区组蛋白修饰(H3K4m3、H3K9m3和H3乙酰化)的状况。同时采用实时定量RT-PCR检测上述三种细胞各基因mRNA表达水平。分析基因的H3K4m3、H3K9m3和H3乙酰化修饰与基因表达之间的相互关系。结果 (1)以mES细胞为参照,NIT-1细胞MafA基因的转录起始区的H3K4m3修饰水平明显增高(P〈0.05),H3K9m3修饰水平明显降低(P〈0.05);NIH 3T3细胞MafA基因的转录起始区的H3K9m3修饰水平明显增高(P〈0.05),H3K4m3修饰水平明显降低(P〈0.05);(2)MafA基因的仅在NIT-1细胞表达,其表达与H3K4m3修饰存在直线相关(相关系数0.995);与H3K9m3修饰存在直线负相关(相关系数-0.751);(3)管家基因MLH1的表达与所检测组蛋白修饰无相关性。结论 H3K9m3与H3K4m3修饰能相互协调,共同调控MafA基因的表达,对胚胎干细胞向β细胞分化具有重要的意义。  相似文献   

10.
染色质作为真核细胞遗传信息,体内外各种因素的作用致使不断的产生损伤,但是细胞仍能保持正常的生长、分裂和繁殖,这与基因组稳定性和完整性保持,并且通过自身的损伤修复有着密切的联系。ATP依赖的染色质重塑是染色质重塑的最重要的方式之一,主要是利用ATP水解释放的能量,将凝聚的异染色质打开,协调损伤修复蛋白与DNA损伤位点的作用,通过对组蛋白的共价键修饰或ATP依赖的染色质重塑复合物开启了DNA的损伤修复的大门。CHD4/Mi-2β的类SWI2/SNF2 ATP酶/解螺旋酶域结构域保守性最强,这一结构域存在与多种依赖于ATP的核小体重构复合物。Mi-2蛋白复合物称为核小体重塑及去乙酰化酶NuRd(nucleoside remodeling and deacetylase,NuRD),是个多亚基蛋白复合物,Mi2β/CHD4是该复合物的核心成员。近来的研究发现,CHD4具有染色质重塑功能,并且参与DNA损伤修复的调控。CHD4羧基端的PHD通过乙酰化或甲基化识别组蛋白H3氨基端Lys9(H3K9ac和H3K9me),并且通过Lys4甲基化(H3K4me)或Ala1乙酰化(H3A Lac)抑制与H3、H4的结合,为染色质重塑提供了保障。Mi-2β/CHD4参与DNA损伤反应,定位于DNA损伤γ-H2AX的foci。沉默Mi-2β/CHD4基因,细胞自发性DNA损伤增多和辐射敏感性增强。表明CHD4在染色质重塑中具有重要的作用。  相似文献   

11.
12.
13.
14.
15.
16.
17.
Verdel A  Moazed D 《FEBS letters》2005,579(26):5872-5878
Heterochromatin is an epigenetically heritable and conserved feature of eukaryotic chromosomes with important roles in chromosome segregation, genome stability, and gene regulation. The formation of heterochromatin involves an ordered array of chromatin changes, including histone deacetylation, histone H3-lysine 9 methylation, and recruitment of histone binding proteins such as Swi6/HP1. Recent discoveries have uncovered a role for the RNA interference (RNAi) pathway in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe and other eukaryotes. Purification of two RNAi complexes, RITS and RDRC, from fission yeast has provided further insight into the mechanism of RNAi-mediated heterochromatin assembly. These discoveries have given rise to a model in which small interfering RNA molecules act as specificity factors that initiate epigenetic chromatin modifications and double strand RNA synthesis at specific chromosome regions.  相似文献   

18.
19.
Sugar beet (Beta vulgaris) chromosomes consist of large heterochromatic blocks in pericentromeric, centromeric, and intercalary regions comprised of two different highly abundant DNA satellite families. To investigate DNA methylation at single base resolution at heterochromatic regions, we applied a method for strand-specific bisulfite sequencing of more than 1,000 satellite monomers followed by statistical analyses. As a result, we uncovered diversity in the distribution of different methylation patterns in both satellite families. Heavily methylated CG and CHG (H=A, T, or C) sites occur more frequently in intercalary heterochromatin, while CHH sites, with the exception of CAA, are only sparsely methylated, in both intercalary and pericentromeric/centromeric heterochromatin. We show that the difference in DNA methylation intensity is correlated to unequal distribution of heterochromatic histone H3 methylation marks. While clusters of H3K9me2 were absent from pericentromeric heterochromatin and restricted only to intercalary heterochromatic regions, H3K9me1 and H3K27me1 were observed in all types of heterochromatin. By sequencing of a small RNA library consisting of 6.76 million small RNAs, we identified small interfering RNAs (siRNAs) of 24 nucleotides in size which originated from both strands of the satellite DNAs. We hypothesize an involvement of these siRNAs in the regulation of DNA and histone methylation for maintaining heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号