首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When grown as renal grafts in adult male hosts, the upper (cranial), middle and lower (caudal) portions of fetal mouse and rat Wolffian ducts developed into epididymis, epididymis plus ductus deferens, and seminal vesicle, respectively. In heterotypic tissue recombinants, the epithelia from upper and middle Wolffian ducts were instructively induced to undergo seminal vesicle morphogenesis by neonatal seminal vesicle mesenchyme. Functional cytodifferentiation was examined in these recombinants using antibodies against major androgen-dependent, seminal vesicle-specific secretory proteins. The instructively induced Wolffian duct epithelia synthesized normal amounts of all of the secretory proteins characteristic of mature seminal vesicles, as judged by immunocytochemistry on tissue sections and gel electrophoresis plus immunoblotting of secretions extracted from the recombinants. In heterospecific recombinants composed of rat and mouse tissues, the seminal vesicle proteins induced were specific for the species that had provided the epithelium. This showed that the seminal vesicle epithelium in the recombinants was derived from instructively induced Wolffian duct epithelium and not from epithelial contamination of the mesenchymal inductor. Upper Wolffian duct epithelium, instructively induced to undergo seminal vesicle morphogenesis, did not express epididymis-specific secretory proteins, showing that its normal development had been simultaneously repressed.  相似文献   

2.
Mesenchyme from neonatal mouse and rat seminal vesicles (SVM) was grown in association with postnatal (adult) epithelial cells from the ureter (URE) and ductus deferens (DDE) in chimeric tissue recombinants composed of mouse mesenchyme and rat epithelium or vice versa. Functional cytodifferentiation was examined in these SVM + URE and SVM + DDE tissue recombinants with antibodies against major androgen-dependent seminal-vesicle-specific secretory proteins. Adult DDE and URE were induced to express seminal cytodifferentiation and produced the complete spectrum of major seminal vesicle secretory (SVS) proteins. The SVS proteins produced were specific for the species that provided the epithelium. In the case of SVM + URE recombinants, the URE, which normally lacks androgen receptors (AR), expressed AR. These results demonstrate that adult epithelial cells retain a developmental plasticity equivalent to their undifferentiated fetal counterparts and are capable of being reprogrammed to express a completely new morphological, biochemical and functional phenotype.  相似文献   

3.
Mesenchymal reprogramming of adult human epithelial differentiation   总被引:3,自引:0,他引:3  
The objective of this study was to determine whether neonatal rat seminal vesicle mesenchyme (rSVM) can reprogram epithelial differentiation in a fully differentiated adult human bladder epithelium. For this purpose neonatal rSVM was isolated from newborn (0-day) Sprague-Dawley rats, and normal adult human bladder epithelium (hBLE) was isolated from radical cystoprostatectomy specimens to prepare rSVM+hBLE tissue recombinants in vitro. After overnight culture the tissue recombinants were grafted beneath the renal capsule of male athymic rodent hosts and allowed to grow in vivo for 6 months. As controls, rSVM and hBLE were grafted separately and allowed to grow for the same period. Tissue recombinants and control tissue grafts were harvested, and secretions were collected for biochemical studies. Tissues were fixed both for histologic as well as immunohistochemical staining. Neonatal rSVM induced normal adult human bladder urothelium to form glandular structures resembling prostate. The induced prostatic acini were filled with secretions that expressed human prostate-specific secretory proteins. These findings demonstrate that adult human urothelial cells retain a responsiveness to neonatal prostatic mesenchymal inductors. Change in urothelial histodifferentiation was associated with change in functional activity. The ability of the neonatal rat mesenchymal tissues to induce morphologic as well as biochemical changes in normal adult human urothelium provides a basis for human tissue engineering and organ reconstruction.  相似文献   

4.
The aim of the present study was to examine the effects of mesenchyme on the cytodifferentiation of the Dunning tumor (DT, R3327), a transplantable rat prostatic adenocarcinoma developed spontaneously from the dorsolateral prostate of a Copenhagen rat. Small pieces of DT were combined with mesenchyme of the rat urogenital sinus (18-day fetal, UGM) or seminal vesicle (0-day neonatal, SVM). Both types of combinations were grown under the kidney capsule of male athymic nude mice for 4 weeks. At harvest, the tissue recombinants were fixed and processed for electron microscopy. Grafts of parental DT were similarly processed for electron microscopy. The tumor was characterized by tubules lined by 2-3 layers of undifferentiated cells lacking secretory granules. The basal lamina was reduplicated, and epithelioid cells traversing gaps in the basal lamina were frequently observed. The stroma was composed of a mixture of fibroblastic and large epithelioid cells derived from the ductal lining epithelium through a process of micrometastasis. In UGM or SVM+DT combinations the mesenchyme influenced the differentiation and secretory activity of the DT epithelium. The induced DT epithelial cells exhibited a well-developed granular endoplasmic reticulum, a large Golgi apparatus and prominent secretory granules which were never observed in the parental DT. The basal lamina returned to normal, while the incidence of micrometastasis was decreased. The collagen content of the stroma was increased with a concurrent appearance of smooth muscle cells surrounding those tubules where secretory cytodifferentiation had occurred. While the mechanism involved in the mesenchyme-induced change in cytodifferentiation remains unknown, it is evident that the DT epithelial cells when associated with normal embryonic or neonatal mesenchyme can express a more normal cytodifferentiation and function. It is concluded (a) that the DT cells can be induced by mesenchyme to express more highly differentiated ultrastructural patterns and secretory cytodifferentiation, (b) that the induced secretory cytodifferentiation is associated with a reduction in invasiveness (micrometastasis) and a more normal-appearing basal lamina and (c) that the increased abundance of collagen fibers and the differentiation of smooth muscle in the stromal compartment are associated with secretory cytodifferentiation suggesting that reciprocal epithelial-mesenchymal interactions are involved in the regulation of the pathobiology of the DT.  相似文献   

5.
Summary Urogenital sinus endoderm of 16.5-day rat foetuses was combined with stomach mesenchyme and the recombinants were either treated with testosterone and grown in vitro or cultured beneath the kidney capsule of adult male rats of the same strain. It was found that testosterone stimulated mitosis in the urogenital endoderm. In recombinants grown under the kidney capsule a stratified squamous epithelium and stomach-like glands were induced under the influence of the forestomach and glandular stomach mesenchymes. However, the induced glands expressed neither rat pepsinogen nor rat ventral prostatic antigen. They did not produce mRNA for the prostatic steroid-binding protein C1. Thus, stomach mesenchyme of rat foetuses induces organ-specific morphogenesis but not functional differentiation in the heterologous endoderm, indicating that cytodifferentiation does not always accompany morphogenesis.  相似文献   

6.
The epithelium of the mammalian vagina arises from two distinct germ layers, endoderm from the urogenital sinus and mesoderm from the Müllerian ducts. While neonatal vaginal epithelium can be induced to form prostate which is normally an endodermal derivative, it has not been determined whether this ability to form prostate is shared by both mesoderm- and endoderm-derived vaginal epithelia. To test the competence of vaginal epithelia we have isolated sinus-derived and Müllerian-derived vaginal epithelia from newborn mice, combined them with rat urogenital sinus mesenchyme, and grown the tissue recombinants for 4 weeks in male athymic nude mice. Endoderm-derived sinus vaginal epithelium was induced to form prostatic tissue which expressed prostate-specific secretory proteins in 21 of 23 tissue recombinants. Müllerian-derived vaginal epithelium formed small ducts and cysts lined by a simple epithelium. These latter tissue recombinants lacked any evidence of prostatic secretory proteins. Similarly, endoderm-derived urethral epithelium was induced to form prostate (17 of 17 cases), while mesoderm-derived uterine epithelium was not (0 of 13 cases). Therefore, the ability to form prostatic epithelium was limited to endodermal derivatives of the urogenital tract.  相似文献   

7.
To study the role of epithelial-mesenchymal interactions in myometrial development, uteri from neonatal Balb/c mice 1 to 60 days postpartum were utilized. Intact (untrypsinized) uteri, trypsinized but unseparated uteri, homotypic uterine tissue recombinants (separated-recombined), or uterine mesenchyme alone were grafted beneath the renal capsule of syngeneic female hosts and grown for 1 mo. Uterine mesenchyme from 1-day mice grafted alone produced small amounts of smooth muscle, most of which was associated with vasculature, whereas uterine mesenchyme from older donors possessing a rudimentary myometrium at the time of grafting formed intermediate amounts of myometrium (actin-positive smooth muscle bundles). In contrast, all specimens containing epithelium (intact, trypsinized, and separated-recombined) developed large amounts of myometrium. Uterine epithelia from neonatal through adult stages were equally effective in permissively inducing myometrial development in 1-day uterine mesenchyme. From these data, it is apparent that uterine epithelium plays an important promotional role in the differentiation and possibly the spatial organization of the myometrium.  相似文献   

8.
Epithelial-mesenchymal interactions play an important role in the development of many different organs and tissues. The secretory glands of the male reproductive system, including the prostate and seminal vesicles, are derived from epithelial precursors. Signals from the underlying mesenchyme are required for normal growth, branching, and differentiation of the seminal vesicle epithelium. Here, we show that a member of the BMP family, Gdf7, is required for normal seminal vesicle development. Expression and tissue recombination experiments suggest that Gdf7 is a mesenchymal signal that acts in a paracrine fashion to control the differentiation of the seminal vesicle epithelium.  相似文献   

9.
Abstract. Epithelia of embryonic urogenital sinuses (UGE) or embryonic or adult urinary bladders (BLE) were associated heterospecifically with mesenchyme of the embryonic urogenital sinus (UGM). The resultant chimeric tissue recombinants prepared with mouse, rat, rabbit, and human tissues were grown for 2 to 14 weeks in male athymic nude mice. For almost all categories of permissive (UGM + UGE) or instructive (UGM + BLE) inductions, prostatic epithelial development occurred. In recombinations of mouse UGM and human fetal BLE, the bladder epithelium was induced to form glandular structures. The morphogenetic process observed was similar to that normally expressed during human prostatic development. We conclude that the mechanism of prostatic development is similar in these mammalian species.  相似文献   

10.
Tissue recombinants of embryonic urogenital sinus mesenchyme (UGM) and epithelium of the urinary bladder (urothelium, BLE) of adult rats and mice were grown for 3-30 d in male syngeneic hosts. Short-term in vivo growth indicated that prostatic morphogenesis is initiated as focal outgrowths from the basal aspect of the adult urothelium. The solid epithelial buds elongate, branch, and subsequently canalize, forming prostatic acini. After 30 d of growth in the male hosts, prostatic acini exhibit secretory activity. The marked changes in urothelial morphology induced by the UGM are accompanied by the expression of fine- structural features indicative of secretory function (rough endoplasmic reticulum, Golgi apparatus, and secretory granules). During this process, urothelial cells express prostatic histochemical markers (alkaline phosphatase, nonspecific esterase, glycosaminoglycans) and prostate-specific antigens. The expression within BLE of prostatic characteristics is associated with the loss of urothelial characteristics. These data indicate that adult urothelial cells retain a responsiveness to embryonic mesenchymal inductors. Furthermore, mesenchyme-induced changes in urothelial cytodifferentiation appear to be coupled to changes in functional activity.  相似文献   

11.
Summary Immunoelectron microscopy of the rat seminal vesicle was performed using specific antibodies to secretory proteins. Proteins were precipitated from rat seminal vesicle secretion and were separated by SDS—polyacrylamide gel electrophoresis. Among the great number of bands the two most prominent bands were selected and designated SVS II and IV. Their apparent molecular weights were 48 kDa and 16.5 kDa respectively. The bands were excised from the gels and used for antibody production in rabbits. The respective antisera were used for immunohistochemical studies both at the light and electron microscopic levels in the rat seminal vesicle and the different prostatic lobes in infantile, adult and castrated animals. A positive immunoreaction was observed in seminal vesicle and lateral prostatic epithelium of the intact adult rat, while it was lacking in prepubertal and castrated animals. The subcellular distribution of both proteins was clearly different: SVS II was exclusively confined to the electron dense core of the secretory vacuoles, while SVS IV was detected only in the clear halo surrounding the central granule. It is suggested that the spatial arrangement of both proteins in the seminal vesicle secretion vacuole reflects a particular functional significance of each of these proteins. These proteins may serve as a tool in the study of regulation of androgendependent protein synthesis.  相似文献   

12.
Epithelial-mesenchymal interactions were investigated considering both morphologic criteria and keratin polypeptide expression in homotypic and heterotypic recombinants of adult mouse skin and oral mucosa. Two series of cross-recombinants of epithelia with different morphology and keratin patterns were chosen: (a) footpad epidermis/ear dermis and ear epidermis/footpad dermis; (b) palate epithelium/cheek connective tissue and cheek epithelium/palate connective tissue. Homotypic and heterotypic recombinants were prepared after EDTA-separation of the original tissues and then grown on syngeneic mice in subcutaneously prepared protected graft chambers. EDTA-separation is especially suited to completely separate the epidermal-dermal union, and the transplantation procedure used strictly prevents contamination with host epithelium. Five weeks after implantation keratins were analyzed by one and two-dimensional gel electrophoresis and peptide mapping. In both series, homotypic recombination of the tissues did not alter the original morphology and keratin polypeptide composition of the individual epithelial components. Ear epidermis displayed no significant changes in structure or keratin pattern in heterotypic recombinants. Recombined with ear dermis, footpad epidermis showed acquisition of some morphologic features typical for ear epidermis and slight changes in keratin composition which were, however, difficult to interpret due to the normal similarities of footpad keratin with that of ear. In contrast, the heterorecombinants of the palate/cheek series exhibited considerable alterations in their keratin patterns. Either epithelium showed suppression of distinct keratin subunits and de novo expression of subunits characteristic of the epithelium normally associated with the connective tissue component. The keratin patterns of both matches closely resembled each other and represented patterns intermediate between the normal patterns. This partial, however, significant modulation in the expression of differentiation markers was paralleled by similarly directed changes in the architecture of the heterotransplanted tissues, thus indicating that both morphogenesis and cytodifferentiation of certain adult epithelia can be influenced by extrinsic mesenchymal factors.  相似文献   

13.
Functional development of the sex accessory tissues was studied in the male rat. Three potentially crucial developmental periods (neonatal, prepubertal and pubertal) were examined, and then the functional integrity of the accessory tissues was investigated in the adult, when the animals would have been expected to display normal function. Four accessory tissues (the seminal vesicles, ventral prostate and caput and cauda epididymides) were used because of their different embryological origins and responses to androgens in the adult. Synthesis and secretion of previously characterized tissue-specific androgen-dependent proteins were taken as indicators of normal function. Development was perturbed by using oestradiol benzoate, since this was known to affect gross development of the seminal vesicles and ventral prostate when given to neonatal rats. Treatment during the first 5 days after birth severely restricted development of the seminal vesicles and ventral prostate. Protein secreted by the former was only 1% of the normal amount, and in many cases several major secretory proteins were essentially missing. Prostatic protein secretion was less than 20% of normal, but all the major proteins were detectable. In both tissues overall protein synthesis per cell was quantitatively normal, but the proportion devoted to specific major secretory proteins was markedly depressed, i.e. the response is differential. In contrast, treatment during the prepubertal period was without noticeable effects. Development of the seminal vesicles and prostate was somewhat inhibited by treatment at puberty, but these changes were minor compared with those after neonatal exposure to oestradiol benzoate. No effects on epididymal protein synthesis or secretory proteins were observed, and epididymal weight and DNA content were only moderately decreased regardless of when oestradiol benzoate was administered during sexual maturation. Hence the neonatal period is not so critical for epididymal development. The substantial changes elicited by oestrogen treatment during neonatal life in seminal-vesicle and prostatic protein synthesis and secretion were compared with those evoked in sexually mature males by either oestrogen treatment or castration. Both these latter treatments resulted in a general decrease in seminal-vesicle protein synthesis and secretion, but the marked differential effects on major proteins after neonatal exposure were absent. Castration did, however, evoke a differential prostatic response, but this was not seen after oestrogen treatment of adults.  相似文献   

14.
The sand rat Psammomys obesus is a mammalian species with male seasonal reproduction. Previously Gernigon et al. (1994) [Gernigon T, Berger M, Lecher P. Seasonal variations in the ultrastructure and production of androgen-dependent proteins in the seminal vesicles of a saharian rodent (Psammomys obesus). J Endocrinol 1994;142:37-46.] reported that the seminal vesicles of the adult sand rat contained a major secretory protein band (M.W. 21000) regulated by testosterone. This protein is synthesized in large amounts when the androgen level increases, and accounts for over 22% of soluble proteins from homogenate of seminal vesicles during the breeding season. When analyzed by NepHGE the protein band of 21kDa appeared to be composed of at least 3 visible spots with pHi values varying from 4 to 7. Its partially internal sequence was identified and exhibited five peptides. Polyclonal antibodies against POSVP21 were obtained in rabbits. They were also used to study immunohistochemical antigen localization by the means of an avidin-biotin peroxidase procedure. Observation showed that it is localized in the cytoplasm of epithelial cells and in secretory products in the lumen. The whole RNA of seminal vesicles was translated in a cell-free system derived from rabbit reticulocyte lysate and [35S]-methionine. Two major bands of 14.4 and 21kDa were visualized by means of denaturing gel electrophoresis. SDS-PAGE from medium incubation of seminal vesicle tissue with [35S]-methionine revealed one band with an apparent molecular weight of 21kDa. The results obtained indicate that seminal vesicle epithelium is the site of POSVP21 synthesis and the comparison of the partial amino acid composition of the internal sequence, indicated that POSVP21 constitute a family of most unusual proteins.  相似文献   

15.
The cell surface proteoglycan, syndecan, exhibits molecular and histological dimorphism in the mouse uterus and vagina. In the mature vagina, syndecan is localized at the surfaces of the basal and intermediate cells of the stratified epithelium and has a modal molecular mass of ca. 92 kDa. The uterus expresses a larger form of syndecan (ca. 110 kDa) which is detected at the basolateral surfaces of the simple columnar epithelial cells. We have investigated whether epithelial-mesenchymal interactions influence the expression of syndecan in these organs by analyzing tissue recombinants composed of mouse epithelium and rat mesenchyme or vice versa with monoclonal antibody 281-2, which recognizes mouse syndecan. In tissue recombinants composed of newborn mouse uterine epithelium and rat vaginal stroma, the uterine epithelium was induced to form a stratified vaginal epithelium which expressed syndecan in same the pattern and mass typical of vaginal epithelium. Likewise, rat uterine stroma induced newborn mouse vaginal epithelium to undergo uterine development, and this epithelium exhibited a uterine pattern of syndecan expression. Although stromal cells normally express little syndecan in most adult organs, analysis of recombinants composed of mouse stroma and rat epithelium revealed that both uterine and vaginal mouse stromata synthesized syndecan that was larger (ca. 170-190 kDa) than the epithelial syndecans. A quantitative increase in the amount of stromal syndecan was evident when stroma was grown in association with epithelium in comparison to stroma grown by itself. These data suggest that epithelial-mesenchymal interactions influence the amount, localization, and mass of both epithelial and stromal syndecan.  相似文献   

16.
L W DeLap  S Tate  A Meister 《Life sciences》1975,16(5):691-704
γ-Glutamyl transpeptidase was prepared from rat seminal vesicles by two methods and was found to be similar to rat kidney γ-glutamyl transpeptidase with respect to substrate specificity, stimulation of “glutaminase” activity by maleate, and apparent molecular weight. Histochemical studies demonstrated that γ-glutamyl transpeptidase is concentrated in the secretory epithelium of the seminal vesicle. Like the epithelium itself, the enzyme responds to the presence or absence of testosterone. The content and specific activities of γ-glutamyl transpeptidase and γ-glutamyl cyclotransferase in rat seminal vesicles are low in orchidectomized animals, an effect which is reversed by administration of testosterone but accentuated by estradiol administration. These enzymes may be involved in the secretory functions of the seminal vesicles.  相似文献   

17.
The guinea pig seminal vesicle epithelium synthesizes and secretes four major secretory proteins (SVP-1-4). Previous work has established that these four proteins are cleaved from two primary translation products in a complex series of protein processing reactions. The present studies suggest that these protein processing reactions are regulated by androgens. In vitro labeling of seminal vesicle proteins revealed significant differences in the patterns of secretory protein intermediates produced by tissue from intact and castrated animals. Seminal vesicle tissue explants from castrated animals secreted a subset of the processing intermediates secreted by tissue from intact animals. The changes in the patterns of secretory protein intermediates became more pronounced with increasing time after castration, and were fully reversible by treatment of castrated animals with testosterone, suggesting that androgens were affecting the processing or secretion of secretory protein precursors. Amino-terminal protein sequencing of secretory protein processing intermediates that accumulate in the seminal vesicle lumen after castration suggests that the guinea pig seminal vesicle contains an androgen-regulated proteolytic processing activity.  相似文献   

18.
A detailed knowledge of the developmental anatomy of the embryonic mouse urogenital tract is required to recognize mutant urogenital phenotypes in transgenic and knock-out mice. Accordingly, the purpose of this article is to review urogenital development in the mouse embryo and to give an illustrated methodological protocol for the dissection of urogenital organ rudiments at 12-13 days of gestation (E12-13) to isolate the urogenital ridge and at E16 to isolate the seminal vesicle, Müllerian duct, Wolffian duct, and prostatic rudiment, the urogenital sinus (UGS). The UGS can be cultured and, in the presence of testosterone, prostatic buds form in vitro. Because of the importance of mesenchymal-epithelial interactions in urogenital development, methods for the isolation of epithelium and mesenchyme from the embryonic urogenital sinus are also described. Urogenital sinus mesenchyme (UGM) and urogenital sinus epithelium (UGE) can be used to construct tissue recombinants that can either be grown in vitro or grafted in vivo for the study of epithelial-mesenchymal interactions in prostatic development.  相似文献   

19.
The present study tests the hypothesis that heterotypic stromal-epithelial interactions cause phenotypic changes in urothelium. The rational for the experimental design is to simulate heterotypic stromal-epithelial interactions that are created at the anastomotic site of intestinal-bladder augmentations and internal urinary diversions where the urothelium is in direct contact with the gastro-intestinal tract tissues. Tissue recombination experiments were performed by combining 14-day embryonic rat and mouse rectal mesenchyme with urothelium from embryonic, newborn, and adult mice or rats. All tissue recombinants were grown beneath the renal capsule of athymic mouse hosts for 6-16 weeks. Analyses were performed to detect expression of uroplakins, cytokeratin 7, 14, 19 and mucin secreting epithelial cells via Periodic Acid-Schiff (PAS). The phenotype of both mouse and rat urothelium was changed to a glandular morphology under the influence of rectal mesenchyme. Immunohistochemical staining revealed a loss of the urothelial specific uroplakins and cytokeratins 7, 14, and 19 (characteristic of urothelium). Histologic analysis revealed the presence of mucin secreting glandular structures which stained positive for PAS. The urothelial transdifferentiation into glandular epithelium was not a function of epithelial age and occurred in the embryonic, newborn and adult urothelium. Likewise, rectal mesenchyme from embryonic, neonatal, and adult animals was able to induce glandular differentiation in bladder epithelium. Urothelium exhibits the plasticity to change into an intestinal like epithelium as a result of mesenchymal/stromal stimulation from the gastro-intestinal tract. This experimental result is germane to heterotypic stromal-epithelial interactions that are created in patients with urinary tract reconstructions (intestinal augmentations, de-mucosalized urothelial lined bladder patches, and internal urinary diversion such as ureterosigmoidostomies). We propose that heterotypic stromal-epithelial interactions may play a role in determining histodifferentiation of urothelial cells at the anastomotic site between bowel and bladder tissue in patients with gastro-intestinal urothelial reconstructions.  相似文献   

20.
This review on normal and neoplastic growth of the prostate emphasizes the importance of epithelial-mesenchymal/stromal interactions. Accordingly, during prostatic development urogenital sinus mesenchyme (a) specifies prostatic epithelial identity, (b) induces epithelial bud formation, (c) elicits prostatic bud growth and regulates ductal branching, (d) promotes differentiation of a secretory epithelium, and (e) specifies the types of secretory proteins expressed. In reciprocal fashion, prostatic epithelium induces smooth muscle differentiation in the mesenchyme. Epithelial-mesenchymal interactions during development continue postnatally into adulthood as stromal-epithelial interactions which play a homeostatic role and in so doing reciprocally maintain epithelial and stromal differentiation and growth-quiescence. Prostatic carcinogenesis involves perturbation of these reciprocal homeostatic cell-cell interactions. The central role of mesenchyme in prostatic epithelial development has been firmly established through analysis of tissue recombinants composed of androgen-receptor-positive wild-type mesenchyme and androgen-receptor-negative epithelium. These studies revealed that at the very least ductal morphogenesis, epithelial cytodifferentiation, epithelial apoptosis and epithelial proliferation are regulated by stromal and not epithelial androgen receptors. Likewise, progression from non-tumorigenesis to tumorigenesis elicited by testosterone plus estradiol proceeds via paracrine mechanisms. Thus, stromal-epithelial interactions play critical roles in the hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号