首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim IJ  You SK  Kim H  Yeh HY  Sharma JM 《Journal of virology》2000,74(19):8884-8892
Infectious bursal disease virus (IBDV) is an avian lymphotropic virus that causes immunosuppression. When specific-pathogen-free chickens were exposed to a pathogenic strain of IBDV (IM), the virus rapidly destroyed B cells in the bursa of Fabricius. Extensive viral replication was accompanied by an infiltration of T cells in the bursa. We studied the characteristics of intrabursal T lymphocytes in IBDV-infected chickens and examined whether T cells were involved in virus clearance. Flow cytometric analysis of single-cell suspensions of the bursal tissue revealed that T cells were first detectable at 4 days postinoculation (p.i.). At 7 days p.i., 65% of bursal cells were T cells and 7% were B cells. After virus infection, the numbers of bursal T cells expressing activation markers Ia and CD25 were significantly increased (P<0.03). In addition, IBDV-induced bursal T cells produced elevated levels of interleukin-6-like factor and nitric oxide-inducing factor in vitro. Spleen and bursal cells of IBDV-infected chickens had upregulated gamma interferon gene expression in comparison with virus-free chickens. In IBDV-infected chickens, bursal T cells proliferated in vitro upon stimulation with purified IBDV in a dose-dependent manner (P<0.02), whereas virus-specific T-cell expansion was not detected in the spleen. Cyclosporin A treatment, which reduced the number of circulating T cells and compromised T-cell mitogenesis, increased viral burden in the bursae of IBDV-infected chickens. The results suggest that intrabursal T cells and T-cell-mediated responses may be important in viral clearance and promoting recovery from infection.  相似文献   

2.
The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.  相似文献   

3.
Simian immunodeficiency virus infection in neonatal macaques   总被引:5,自引:0,他引:5       下载免费PDF全文
Children with human immunodeficiency virus infection often have higher viral loads and progress to AIDS more rapidly than adults. Since the intestinal tract is a major site of early viral replication and CD4(+) T-cell depletion in adults, we examined the effects of simian immunodeficiency virus (SIV) on both peripheral and intestinal lymphocytes from 13 neonatal macaques infected with SIVmac239. Normal neonates had more CD4(+) T cells and fewer CD8(+) T cells in all tissues than adults. Surprisingly, neonates had substantial percentages of CD4(+) T cells with an activated, memory phenotype (effector CD4(+) T cells) in the lamina propria of the intestine compared to peripheral lymphoid tissues, even when examined on the day of birth. Moreover, profound and selective depletion of jejunum lamina propria CD4(+) T cells occurred in neonatal macaques within 21 days of infection, which was preceded by large numbers of SIV-infected cells in this compartment. Furthermore, neonates with less CD4(+) T-cell depletion in tissues tended to have higher viral loads. The persistence of intestinal lamina propria CD4(+) T cells in some neonates with high viral loads suggests that increased turnover and/or resistance to CD4(+) T-cell loss may contribute to the higher viral loads and increased severity of disease in neonatal hosts.  相似文献   

4.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) primarily infect activated CD4(+) T cells but can infect macrophages. Surprisingly, ex vivo tetramer-sorted SIV-specific CD8(+) T cells that eliminated and suppressed viral replication in SIV-infected CD4(+) T cells failed to do so in SIV-infected macrophages. It is possible, therefore, that while AIDS virus-infected macrophages constitute only a small percentage of all virus-infected cells, they may be relatively resistant to CD8(+) T cell-mediated lysis and continue to produce virus over long periods of time.  相似文献   

5.
Garnett CT  Erdman D  Xu W  Gooding LR 《Journal of virology》2002,76(21):10608-10616
The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 x 10(6) copies of the adenovirus genome/10(7) cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form.  相似文献   

6.
《Seminars in Virology》1993,4(3):181-186
Several host immune mechanisms are activated in the course of a herpes simplex virus infection. These include natural resistance mechanisms (natural killer cells and interferon), antiviral antibodies and effector CD4 and CD8 T lymphocytes. An important mechanism in the control of viral replication in epidermal cells involves the recruitment and activation of macrophages by CD4 T cells. In some instances, the action of CD4 T cells can lead to immune pathology following infection of the eye (stromal ketatitis) or central nervous system (demyelination). Despite the efficiency of the immune response in countering infection, the virus has evolved strategies to subvert the action of antibodies and complement and the detection of infected cells by cytotoxic T lymphocytes.  相似文献   

7.
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious vesicular disease of cloven-hoofed animals. In the present study we use FMDV serotype C infection of swine to determine, by analytical techniques, the direct ex vivo visualization of virus-infected immune cells during the first 17 days of infection. We report, for the first time, that FMDV C-S8c1 can infect T and B cells at short periods of time postinoculation, corresponding with the peak of the viremia. There is a significant lymphopenia that involves CD3(+) CD4(-) CD8(+/-), CD3(+) CD4(-) CD8(+)Tc, and CD3(+) CD4(+) CD8(+) memory Th but not CD3(+) CD4(+) CD8(-) na?ve Th lymphocytes. In addition, a profound depletion of the vast majority of peripheral T cells in lymph nodes and spleen is observed. This selective depletion of T cells is not due mainly to in situ death via apoptosis as visualized by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique. Thus, early infection of T cells by FMDV may be the main cause of the observed T-cell depletion. Importantly, this lack of T cells is reflected in a reduced response to mitogen activation, which in many cases is totally eliminated. These data suggest a mechanism by which the virus causes a transient immunosuppression, subvert the immune systems, and spreads. These results have important implications for our understanding of early events in the development of a robust immune response against FMDV.  相似文献   

8.
In order to identify organ and cellular targets of persistent enterovirus infection in vivo, immunocompetent mice (SWR/J, H-2q) were inoculated intraperitoneally with coxsackievirus B3 (CVB3). By use of in situ hybridization for the detection of enteroviral RNA, we show that CVB3 is capable of inducing a multiorgan disease. During acute infection, viral RNA was visualized at high levels in the heart muscle, pancreas, spleen, and lymph nodes and at comparably low levels in the central nervous system, thymus, lung, and liver. At later stages of the disease, the presence of enteroviral RNA was found to be restricted to the myocardium, spleen, and lymph nodes. To characterize infected lymphoid cells during the course of the disease, enteroviral RNA and cell-specific surface antigens were visualized simultaneously in situ in spleen tissue sections. In acute infection, the majority of infected spleen cells, which are located primarily at the periphery of lymph follicles, were found to express the CD45R/B220+ phenotype of pre-B and B cells. Whereas viral RNA was also detected in certain CD4+ helper T cells and Mac-1+ macrophages, no enteroviral genomes were identified in CD8+ cytotoxic/suppressor T cells. Later in disease, the localization of enteroviral RNA revealed a persistent type of infection of B cells within the germinal centers of secondary follicles. In addition, detection of the replicative viral minus-strand RNA intermediate provided evidence for virus replication in lymphoid cells of the spleen during the course of the disease. These data indicate that immune cells are important targets of CVB3 infection, providing a noncardiac reservoir for viral RNA during acute and persistent myocardial enterovirus infection.  相似文献   

9.
Although the intestinal tract plays a major role in early human immunodeficiency virus (HIV) infection, the role of immune activation and viral replication in intestinal tissues is not completely understood. Further, increasing evidence suggests the early leukocyte activation antigen CD69 may be involved in the development or regulation of important T cell subsets, as well as a major regulatory molecule of immune responses. Using the simian immunodeficiency virus (SIV) rhesus macaque model, we compared expression of CD69 on T cells from the intestine, spleen, lymph nodes, and blood of normal and SIV-infected macaques throughout infection. In uninfected macaques, the majority of intestinal lamina propria CD4+ T cells had a memory (CD95+) phenotype and co-expressed CD69, and essentially all intestinal CCR5+ cells co-expressed CD69. In contrast, systemic lymphoid tissues had far fewer CD69+ T cells, and many had a naïve phenotype. Further, marked, selective depletion of intestinal CD4+CD69+ T cells occurred in early SIV infection, and this depletion persisted throughout infection. Markedly increased levels of CD8+CD69+ T cells were detected after SIV infection in virtually all tissues, including the intestine. Further, confocal microscopy demonstrated selective, productive infection of CD3+CD69+ T cells in the intestine in early infection. Combined, these results indicate CD69+CD4+ T cells are a major early target for viral infection, and their rapid loss by direct infection may have profound effects on intestinal immune regulation in HIV infected patients.  相似文献   

10.
Turkeys inoculated with spleen extracts from lymphoproliferative disease (LPD)-affected birds developed viremia, followed by typical LPD lesions. Electron microscopy and biochemical characterization established that the virus present in the blood of infected turkeys is a type C retrovirus. The viral particles possess a buoyant density of 1.17 g/ml in sucrose gradients; they contain high-molecular-weight RNA and an RNA-instructed DNA polymerase with efficient exogenous and endogenous activity. The LPD virus polymerase is preferentially activated by magnesium ions. Cross nucleic acid hybridization assays revealed no sequence homology between the viral genome of LPD and avian myeloblastosis virus or reticuloendotheliosis virus, thus indicating that the LPD virus belongs to a distinct group unrelated to the avian leukosis-sarcoma virus complex or to the reticuloendotheliosis virus group.  相似文献   

11.
Replication of the neurotropic mouse hepatitis virus strain JHM (JHMV) is controlled primarily by CD8(+) T-cell effectors utilizing gamma interferon (IFN-gamma) and perforin-mediated cytotoxicity. CD4(+) T cells provide an auxiliary function(s) for CD8(+) T-cell survival; however, their direct contribution to control of virus replication and pathology is unclear. To examine a direct role of CD4(+) T cells in viral clearance and pathology, pathogenesis was compared in mice deficient in both perforin and IFN-gamma that were selectively reconstituted for these functions via transfer of virus-specific memory CD4(+) T cells. CD4(+) T cells from immunized wild-type, perforin-deficient, and IFN-gamma-deficient donors all initially reduced virus replication. However, prolonged viral control by IFN-gamma-competent donors suggested that IFN-gamma is important for sustained virus control. Local release of IFN-gamma was evident by up-regulation of class II molecules on microglia in recipients of IFN-gamma producing CD4(+) T cells. CD4(+) T-cell-mediated antiviral activity correlated with diminished clinical symptoms, pathology, and demyelination. Both wild-type donor CD90.1 and recipient CD90.2 CD4(+) T cells trafficked into the central nervous system (CNS) parenchyma and localized to infected white matter, correlating with decreased numbers of virus-infected oligodendrocytes in the CNS. These data support a direct, if limited, antiviral role for CD4(+) T cells early during acute JHMV encephalomyelitis. Although the antiviral effector mechanism is initially independent of IFN-gamma secretion, sustained control of CNS virus replication by CD4(+) T cells requires IFN-gamma.  相似文献   

12.
Highly conserved amino acids in the second helix structure of the human immunodeficiency virus type 1 (HIV-1) MA protein were identified to be critical for the incorporation of viral Env proteins into HIV-1 virions from transfected COS-7 cells. The effects of these MA mutations on viral replication in the HIV-1 natural target cells, CD4+ T lymphocytes, were evaluated by using a newly developed system. In CD4+ T lymphocytes, mutations in the MA domain of HIV-1 Gag also inhibited the incorporation of viral Env proteins into mature HIV-1 virions. Furthermore, mutations in the MA domain of HIV-1 Gag reduced surface expression of viral Env proteins in CD4+ T lymphocytes. The synthesis of gp160 and cleavage of gp160 to gp120 were not significantly affected by MA mutations. On the other hand, the stability of gp120 in MA mutant-infected cells was significantly reduced compared to that in the parental wild-type virus-infected cells. These results suggest that functional interaction between HIV-1 Gag and Env proteins is not only critical for efficient incorporation of Env proteins into mature virions but also important for proper intracellular transport and stable surface expression of viral Env proteins in infected CD4+ T lymphocytes. A single amino acid substitution in MA abolished virus infectivity in dividing CD4+ T lymphocytes without significantly affecting virus assembly, virus release, or incorporation of Gag-Pol and Env proteins, suggesting that in addition to its functional role in virus assembly, the MA protein of HIV-1 also plays an important role in other steps of virus replication.  相似文献   

13.
A small number of HIV-infected individuals known as elite controllers experience low levels of chronic phase viral replication and delayed progression to AIDS. Specific HLA class I alleles are associated with elite control, implicating CD8(+) T lymphocytes in the establishment of these low levels of viral replication. Most HIV-infected individuals that express protective HLA class I alleles, however, do not control viral replication. Approximately 50% of Mamu-B*00801(+) Indian rhesus macaques control SIVmac239 replication in the chronic phase in a manner that resembles elite control in humans. We followed both the immune response and viral evolution in SIV-infected Mamu-B*00801(+) animals to better understand the role of CD8(+) T lymphocytes during the acute phase of viral infection, when viral control status is determined. The virus escaped from immunodominant Vif and Nef Mamu-B*00801-restricted CD8(+) T lymphocyte responses during the critical early weeks of acute infection only in progressor animals that did not control viral replication. Thus, early CD8(+) T lymphocyte escape is a hallmark of Mamu-B*00801(+) macaques who do not control viral replication. By contrast, virus in elite controller macaques showed little evidence of variation in epitopes recognized by immunodominant CD8(+) T lymphocytes, implying that these cells play a role in viral control.  相似文献   

14.
The early pathogenic effects of bovine immunodeficiency-like virus (BIV) were studied in calves experimentally inoculated with BIV. All animals inoculated with BIV R29-infected cells seroconverted by 6 weeks postinoculation, and BIV was recoverable from each animal at 2 weeks postinoculation. However, levels of BIV replication in vivo appeared to be low. In situ hybridization studies indicated that during peak periods of viral replication in vivo, less than 0.03% of peripheral blood mononuclear cells were expressing detectable levels of viral RNA. Moreover, the levels of viral RNA in these cells in vivo were less than 1/10 the levels observed in persistently infected cells in vitro. BIV-inoculated calves had significantly higher numbers of circulating lymphocytes, and follicular hyperplasia was observed in lymph nodes, hemal nodes, and spleen. The histopathological changes observed in BIV-infected calves were similar to changes found early after infection with the immunosuppressive lentiviruses, including human immunodeficiency virus type 1.  相似文献   

15.
Virus-specific CD8(+) T cells play an important role in controlling viral replication during acute primary infection. At this early stage, mucosal tissues represent a major site of viral replication. Therefore, the presence of functional virus-specific CD8(+) effector T cells in the mucosa during primary infection is a key issue in the pathogenesis of infection. In order to evaluate the extent of this response, six rhesus macaques were infected with simian immunodeficiency virus (SIV)mac251 and sacrificed on day 28 following infection. The functional activity of SIV-effector CD8(+) T cells was evaluated by means of a gamma-IFN ELISpot assay with autologous cells expressing SIV env, gag, pol and nef genes as antigen-presenting cells. This evaluation was performed on PBMCs, spleen, peripheral lymph node, gut-associated lymph node and lamina propria lymphocytes isolated from different mucosal sites. In parallel, the cell-associated viral load was quantified in all these tissues. Five macaques had gamma-IFN SIV-specific CD8(+) T cells in PBMCs and/or lymph nodes. However, in these macaques, these CD8(+) T cells were only present in seven mucosal sites out of 24 tested (the lamina propria lymphocytes of the duodenum, jejunum, ileum and colon were evaluated separately for each animal), whereas they were detected in all corresponding gut-associated lymph nodes. In addition, the mean frequency of SIV-specific gamma-IFN-secreting CD8(+) T cells was 117 +/- 228 per 10(6) cells in the lamina propria vs. 958 +/- 1184 in gut associated lymph nodes (P = 0.001). No overall correlation was observed between the CD8(+) T-cell activity and the viral load: among the 17 mucosal sites in which the virus was isolated, no specific activity was detected in 13 sites. In conclusion, these data indicate that the frequencies of SIV-specific gamma-IFN-secreting CD8(+) T cells are low in the mucosa during early primary infection. This may be of importance with regard to the intense viral replication observed in the mucosa at this stage.  相似文献   

16.
Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes.  相似文献   

17.
The ORF3 protein of hepatitis E virus (HEV) is a multifunctional protein important for virus replication. The ORF3 proteins from human, swine, and avian strains of HEV contain a conserved PXXP amino acid motif, resembling either Src homology 3 (SH3) cell signaling interaction motifs or "late domains" involved in host cell interactions aiding in particle release. Using an avian strain of HEV, we determined the roles of the conserved prolines within the PREPSAPP motif in HEV replication and infectivity in Leghorn male hepatoma (LMH) chicken liver cells and in chickens. Each proline was changed to alanine to produce 8 avian HEV mutants containing single mutations (P64, P67, P70, and P71 to A), double mutations (P64/67A, P64/70A, and P67/70A), and triple mutations (P64/67/70A). The results showed that avian HEV mutants are replication competent in vitro, and none of the prolines in the PXXPXXPP motif are essential for infectivity in vivo; however, the second and third prolines appear to aid in fecal virus shedding, suggesting that the PSAP motif, but not the PREP motif, is involved in virus release. We also showed that the PSAP motif interacts with the host protein tumor suppressor gene 101 (TSG101) and that altering any proline within the PSAP motif disrupts this interaction. However, we showed that the ORF2 protein expressed in LMH cells is efficiently released from the cells in the absence of ORF3 and that coexpression of ORF2 and ORF3 did not act synergistically in this release, suggesting that another factor(s) such as ORF1 or viral genomic RNA may be necessary for proper particle release.  相似文献   

18.
Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.  相似文献   

19.
We quantified CD8 T cells needed to cause type 1 diabetes and studied the anatomy of the CD8 T cell/beta (β) cell interaction at the immunologic synapse. We used a transgenic model, in situ tetramer staining to distinguish antigen specific CD8 T cells from total T cells infiltrating islets and a variety of viral mutants selected for functional deletion(s) of various CD8 T cell epitopes. Twenty percent of CD8 T cells in the spleen were specific for all immunodominant and subdominant viral glycoprotein (GP) epitopes. CTLs to the immunodominant LCMV GP33-41 epitope accounted for 63% of the total (12.5% of tetramers). In situ hybridization analysis demonstrated only 1 to 2% of total infiltrating CD8 T cells were specific for GP33 CD8 T cell epitope, yet diabetes occurred in 94% of mice. The immunologic synapse between GP33 CD8 CTL and β cell contained LFA-1 and perforin. Silencing both immunodominant epitopes (GP33, GP276–286) in the infecting virus led to a four-fold reduction in viral specific CD8 CTL responses, negligible lymphocyte infiltration into islets and absence of diabetes.  相似文献   

20.
Highly pathogenic simian/human immunodeficiency virus chimeric viruses are known to induce a rapid, irreversible depletion of CD4+ T lymphocytes in the peripheral blood of acutely infected macaque monkeys. To more fully assess the systemic effects of this primary virus infection, specimens were collected serially between days 3 and 21 postinfection from variety of lymphoid tissues (lymph nodes, thymus, and spleen) and gastrointestinal tract and examined by DNA and RNA PCR, in situ hybridization, and immunohistochemical assays. In addition, the lymphoid tissues were evaluated by fluorescence-activated cell sorting. Virus infection was initially detected by DNA PCR on day 3 postinfection in lymph node samples and peaked on day 10 in the T-lymphocyte-rich areas of this tissue. CD4+ T-cell levels remained stable through day 10 in several lymphoid tissue specimens examined but fell precipitously between days 10 and 21. In situ terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays revealed the accumulation of apoptotic cells during the second week of infection in both lymph nodes and thymus, which colocalized, to a large extent, to sites of both virus replication and CD4+ T-lymphocyte loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号