首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously provided evidence that seed coat-associated invertase is involved in controlling the carbohydrate state of developing seeds and, by this way, triggering developmental processes (Weber et al . (1995) Plant Cell , 7, 1835–1846). To verify our postulate, we compared seed development of two genotypes of Vicia faba differing in seed weight. The seed coat of the large-seeded genotype formed a higher number of parenchymatous cell layers and matured later. VfCWINV1 encoding a cell wall-bound invertase is expressed in the unloading zone of the seed coat. mRNA levels peaked later in 'large' coats and mRNA was present in more cell layers over a longer time period. Cell wall-bound invertase activity revealed a similar accumulation pattern, obviously generating the high hexose conditions present in the endospermal cavity bathing the premature cotyledons and thus controlling their carbohydrate state. High hexose conditions were correlated with an extended mitotic activity of the 'large' cotyledons. In 'large' and 'small' cotyledons, sucrose levels rose when hexoses decreased apparently terminating cell divisions and initiating differentiation and storage activities. This developmental switch was delayed in 'large' embryos. To prove the outlined relationship, sucrose was added in vitro to mitotically active cotyledons. This treatment favoured nuclear expansion and starch accumulation over cell division. In contrast, a hexose-based medium maintained cell divisions. We conclude that development of the embryo is coordinately regulated with that of the maternal seed coat which controls, by metabolic signals, the phase of cell division of the embryo and consequently also seed size.  相似文献   

2.
 Cell wall-bound invertase (CWI) is spatially and temporally the first enzyme which metabolizes the incoming sucrose in developing seed of maize (Zea mays). Our previous studies have shown that the cell wall-bound invertase-2 (INCW2) isozyme encoded by the wild-type gene of the Miniature1 (Mn1) seed locus plays a critical role in seed development. Null mutations of the gene, such as the mn1 seed mutant which lacks invertase activity, are associated with a loss of ∼70–80% of the normal seed weight. We show here that under in vitro kernel culture conditions the hexose-based medium was similar to the sucrose-based medium in promoting the normal development of kernels of the Mn1, but not of the mutant mn1, genotype. Anatomical, biochemical, and immunohistological data showed that the mn1 kernels retain their mutant phenotype regardless of the presence of sucrose or hexoses in the culture media. The most drastic changes in the mn1 seed mutant were associated with a significant reduction in the size of the endosperm, but not in the pattern or the level of starch localization. Because Mn1 expression was temporally coincident with the endosperm cell divisions, INCW2 must play a critical role in providing hexose sugars for mitotic division, and only a minor role in generating carbon skeletal substrates for starch biosynthesis in the early stages of endosperm development. Furthermore, a lack of the wild-type seed phenotype of the mn1 mutant in hexose media suggests that a metabolic release of hexoses catalyzed by INCW2, rather than an exogenous source, is critical for both generating appropriate sugar-sensing signals for gene expression and for normal endosperm development. Received: 8 April 1998 / Accepted: 14 August 1998  相似文献   

3.
In order to understand sucrose transport in developing seeds of cereals at the molecular level, we cloned from a caryopses library two cDNAs encoding sucrose transporters, designated HvSUT1 and HvSUT2. Sucrose uptake activity was confirmed by heterologous expression in yeast. Both transporter genes are expressed in maternal as well as filial tissues. In a series of in situ hybridizations we analysed the cell type-specific expression in developing seeds. HvSUT1 is preferentially expressed in caryopses in the cells of the nucellar projection and the endospermal transfer layer, which represent the sites of sucrose exchange between the maternal and the filial generation and are characterized by transfer cell formation. HvSUT2 is expressed in all sink and source tissues analysed and may have a general housekeeping role. The rapid induction of HvSUT1 gene expression in caryopses at approximately 5-6 days after fertilization coincides with increasing levels of sucrose as well as sucrose synthase mRNA and activity, and occurs immediately before the onset of rapid starch accumulation within the endosperm. Starch biosynthesis requires sucrose to be imported into the endosperm, as direct precursor for starch synthesis and to promote storage-associated processes. We discuss the possible role of HvSUT1 as a control element for the endospermal sucrose concentration.  相似文献   

4.
Leaf sucrose, starch, hexose and maximum extractable soluble acid invertase activity were compared throughout the day in source leaves of 13 plant species chosen for their putative phloem-loading type (apoplastic or symplastic). Four species which represent the different phloem-loading types (tomato, barley, maize and Fuchsia ) were studied in detail. Using this information we wished to determine whether a positive correlation between foliar carbohydrates and acid invertase activity exists in leaves from different species and, furthermore, whether this relationship is determined by phloem-loading type. Acid invertase activity was relatively constant throughout the day in all species. The extent of sucrose, hexose and starch accumulation and the sucrose: starch ratio measured at a given time were species-dependent. No correlations were found between foliar soluble acid invertase activity and the hexose, sucrose or starch content of the leaves in any of the species, regardless of phloem-loading type. The species examined could be divided into three distinct groups: (1) high sucrose, low invertase; (2) low sucrose, low invertase; and (3) low sucrose, high invertase. The absence of an inverse relationship between leaf sucrose, hexose or starch contents and endogenous soluble acid invertase suggests that this enzyme is not directly involved in carbon partitioning in leaves but serves an auxiliary function.  相似文献   

5.
Tuberising stolon tips of potato ( Solanum tuberosum L. cv. Record) accumulate starch and sucrose but the hexose content, particularly fructose, declines rapidly. Similar changes occur in the region 2 cm behind the swelling apex but the decline in glucose is far more pronounced than in the developing tuber. Tuberisation is characterised by an apparent switch from an invertase-dominated sucrolytic system (both acid and alkaline invertases [EC 3.2.1.26] are present) to one dominated by sucrose synthase (EC 2.4.1.13). Sucrose synthase and fructokinase (EC 2.7.1.4) activities were, at a maximum, ca 10- and 5-fold higher, respectively in the swelling stolon tip compared with the non-tuberising region. At the highest starch contents attained, the starch level in the young developing tuber was approximately double that in the adjacent non-tuberising stolon region. Immunoblots revealed that developmental changes in sucrose synthase. fructokinase and alkaline invertase polypeptides corresponded with enzyme activities. Antibodies raised against the N-terminal amino acid sequence of a soluble invertase purified from mature tubers did not detect significant quantities of a polypeptide in stolons and young, developing tubers. Antibodies raised against an in vitro expression product of an apoplastic invertase cloned from a leaf cDNA library detected a polypeptide in developing tubers but not in mature ones. However, expression of the protein did not correlate well with acid invertase activity during early tuber formation.  相似文献   

6.
The objective of this study was to determine the effect of short-term (4 days) and long-term (8 days) heat stress (35°C) on sink activity of maize (Zea mays L.) kernels. Beginning at 3 days after pollination (DAP) kernels were grown in vitro at 25°C and 24 h later were transferred to 35°C for either 4 or 8 days. Each treatment had a control that was maintained continously at 25°C. Two experiments were designed to examine the uptake and distribution of 14C among hexoses, sucrose and starch in the pedicel placento-chalazal (pedicel/p-c). endosperm, and pericarp tissues of kernels exposed to heat stress for 4 or 8 days. Kernels cultured in vitro were placed in 14C-sucrose medium either during the period of heat stress (experiment 1; 5 to 13 DAP) or immediately following heat-stress treatments (experiment 2; 10 to 22 DAP). In both experiments no significant effect of heat stress was observed on the total radioactivity accumulated in the kernels until about 17 DAP, after which heat-stressed kernels accumulated less 14C than the control. During the linear fill period, the endosperm of kernels exposed to heat stress accumulated more radioactivity associated with hexoses and sucrose and less radioactivity incorporated into starch, as compared to the control. Kernels heat stressed for 4 days showed a partial recovery in starch synthesis by 21 DAP, but to levels of only 65% of that of the control. Kernels heat stressed for 8 days did not recover. When 14C-sucrose was supplied during the heat stress period (5–13 DAP). kernels from all treatments accumulated more hexoses that sucrose in the pedicel/p-c. However, during the period following heat stress (10–22 DAP), pedicel/p-c accumulated sucrose, but only in kernels exposed to long-term heat stress. Soluble invertase activity was inhibited by both short-term and long-term heat stress, whereas the activity of insoluble invertase was affected only by long-term heat stress. These results support the hypothesis that the disruption of kernel growth and more particularly endosperm starch biosynthesis, in response to heat stress, is mainly associated with changes in carbon utilization and partitioning between the different nonstructural carbohydrates within the endosperm rather than with a limitation in carbon supply to the kernel. Therefore, the effect on sink activity does not seem to be attributable to a thermal disruption of kernel uptake of sugars, but rather it is a consequence of heat perturbation of other physiological processes such as endosperm sugar metabolism and starch biosynthesis.  相似文献   

7.
To distinguish their roles in early kernel development and stress, expression of soluble (Ivr2) and insoluble (Incw2) acid invertases was analyzed in young ovaries of maize (Zea mays) from 6 d before (-6 d) to 7 d after pollination (+7 d) and in response to perturbation by drought stress treatments. The Ivr2 soluble invertase mRNA was more abundant than the Incw2 mRNA throughout pre- and early post-pollination development (peaking at +3 d). In contrast, Incw2 mRNAs increased only after pollination. Drought repression of the Ivr2 soluble invertase also preceded changes in Incw2, with soluble activity responding before pollination (-4 d). Distinct profiles of Ivr2 and Incw2 mRNAs correlated with respective enzyme activities and indicated separate roles for these invertases during ovary development and stress. In addition, the drought-induced decrease and developmental changes of ovary hexose to sucrose ratio correlated with activity of soluble but not insoluble invertase. Ovary abscisic acid levels were increased by severe drought only at -6 d and did not appear to directly affect Ivr2 expression. In situ analysis showed localized activity and Ivr2 mRNA for soluble invertase at sites of phloem-unloading and expanding maternal tissues (greatest in terminal vascular zones and nearby cells of pericarp, pedicel, and basal nucellus). This early pattern of maternal invertase localization is clearly distinct from the well-characterized association of insoluble invertase with the basal endosperm later in development. This localization, the shifts in endogenous hexose to sucrose environment, and the distinct timing of soluble and insoluble invertase expression during development and stress collectively indicate a key role and critical sensitivity of the Ivr2 soluble invertase gene during the early, abortion-susceptible phase of development.  相似文献   

8.
Growth, accumulation of sugars and starch, and the activity of enzymes involved in sucrose mobilization were determined throughout the development of sweet pepper fruits. Fruit development was roughly divided into three phases: (1) an initial phase with high relative growth rate and hexose accumulation, (2) a phase with declining growth rate and accumulation of sucrose and starch, and (3) a ripening phase with no further fresh weight increase and with accumulation of hexoses, while sucrose and starch were degraded. Acid and neutral invertase (EC 3.2.1.26) were closely correlated to relative growth rate until ripening and inversly correlated to the accumulation of sucrose. Acid invertase specifically increased during ripening, concurrently with the accumulation of hexoses. Sucrose synthase (EC 2.4.1.13) showed little correlation to fruit development, and in periods of rapid growth the activity of sucrose synthase was low compared to the invertases. However, during late fruit growth sucose synthase was more active than the invertases. We conclude that invertase activities determine the accumulation of assimilates in the very young fruits, and a reactivation of acid invertase is responsible for the accumulation of hexoses during ripening. During late fruit growth, before ripening, sucrose synthase is transiently responsible for the sucrose breakdown in the fruit tissue. Results also indicate that pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) and its activator fructose-2,6-bisphosphate (Fru2,6bisP) are involved in the regulation of the sink metabolism of the fruit tissue.  相似文献   

9.
10.
11.
Tissue distribution and activity of enzymes involved in sucrose and hexose metabolism were examined in kernels of two inbreds of maize (Zea mays L.) at progressive stages of development. Levels of sugars and starch were also quantitated throughout development. Enzyme activities studied were: ATP-linked fructokinase, UTP-linked fructokinase, ATP-linked glucokinase, sucrose synthase, UDP-Glc pyrophosphorylase, UDP-Glc dehydrogenase, PPi-linked phosphofructokinase, ATP-linked phosphofructokinase, NAD-dependent sorbitol dehydrogenase, NADP-dependent 6-P-gluconate dehydrogenase, NADP-dependent Glc-6-P dehydrogenase, aldolase, phosphoglucoisomerase, and phosphoglucomutase. Distribution of invertase activity was examined histochemically. Hexokinase and ATP-linked phosphofructokinase activities were the lowest among these enzymes and it is likely that these enzymes may regulate the utilization of sucrose in developing maize kernels. Most of the hexokinase activity was found in the endosperm, but the embryo had high activity on a dry weight basis. The endosperm, which stores primarily starch, contained high PPi-linked phosphofructokinase and low ATP-linked phosphofructokinase activities, whereas the embryo, which stores primarily lipids, had much higher ATP-linked phosphofructokinase activity than did the endosperm. It is suggested that PPi required by UDP-Glc pyrophosphorylase and PPi-linked phosphofructokinase in the endosperm may be supplied by starch synthesis. Sorbitol dehydrogenase activity was largely restricted to the endosperm, whereas 6-P-gluconate and Glc-6-P dehydrogenase activities were highest in the base and pericarp. A possible metabolic pathway by which sucrose is converted into starch is proposed.  相似文献   

12.
In rice, caryopses located at the base of the panicle have a lower growth rate than those at the tip of the panicle. The former and latter types of caryopses are called inferior and superior caryopses, respectively. Taking the different growth rate into consideration, sugar status and the expression of genes encoding carbohydrate-metabolizing enzymes in inferior caryopses were compared with those in superior caryopses. During the first 5 d after flowering, superior caryopses elongated rapidly, but inferior caryopses did not. At this phase, inferior caryopses had a low ratio of hexose to sucrose, high activity of acid invertase and the absence of the expression of the genes encoding the above enzymes except for two isoforms of cell wall invertase, OsCIN4 and INV1, in comparison with superior caryopses. At the start of caryopsis elongation in both superior and inferior caryopses, the hexose/sucrose ratio increased accompanied by gene expression of vacuolar invertase (INV3), sucrose synthase (RSus1) and ADP-glucose pyrophosphorylase (AGP-L2: D50317). Furthermore, the genes related to endospermal starch accumulation were expressed highly with the decrease in the hexose/sucrose ratio after its peak. Based on the comparison of superior and inferior caryopses, the possible mechanism of grain filling in rice is discussed.  相似文献   

13.
Albugo candida (pers.) O. Kuntze (white blister rust) is a biotrophic fungus which infects cruciferous plants including Arabidopsis thaliana (L) Heynh. We report the effect of this pathogen on the photosynthetic and carbohydrate metabolism of A. thaliana. As infection progressed A. Candida caused a reduction in the rate of photosynthesis when measured at either ambient or saturating concentrations of CO2. These data suggested that both chlorophyll and Rubisco were lost from regions of infected leaves, and measurements of chlorophyll, Rubisco content and activity supported these observations. The reduction in the rate of photosynthesis was not caused by closure of stomata as transpiration was unaffected by the disease. Infected leaves accumulated both soluble carbohydrates and starch. The activities of sucrose-phosphate synthase, sucrose synthase and ADP glucose pyrophosphorylase did not change in response to infection. However, the activities of both the wall-bound and soluble acid invertases were higher in infected leaves than in controls; a new soluble invertase isoform with a pl of 5-1 appeared in infected leaves. The possible origin of the increase in wall-bound and soluble invertase activities and its effect on the carbohydrate and photosynthetic metabolism of the leaf are discussed.  相似文献   

14.
Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.  相似文献   

15.
In a compatible interaction biotrophic fungi often lower the yield of their hosts by reducing photosynthesis and altering the fluxes of carbon within the infected leaf. In contrast, comparatively little is known about the metabolic consequences of activating resistance responses. In this study we investigated the hypothesis that the activation of both race-specific (Mla12) and broad-spectrum (mlo) resistance pathways in barley leaves infected with Blumeria graminis represents a cost to the plant in terms of carbon production and utilization. We have shown, using quantitative imaging of chlorophyll fluorescence, that during a susceptible interaction, photosynthesis was progressively reduced both in cells directly below fungal colonies and in adjacent cells when compared with uninoculated leaves. The lower rate of photosynthesis was associated with an increase in invertase activity, an accumulation of hexoses and a down-regulation of photosynthetic gene expression. During both Mla12- and mlo-mediated resistance, photosynthesis was also reduced, most severely inhibited in cells directly associated with attempted penetration of the fungus but also in surrounding cells. These cells displayed intense autofluorescence under ultraviolet illumination indicative of the accumulation of phenolic compounds and/or callose deposition. The depression in photosynthesis was not due only to cell death but also to an alteration in source-sink relations and carbon utilization. Apoplastic (cell wall-bound) invertase activity increased more rapidly and to a much greater extent than in infected susceptible leaves and was accompanied by an accumulation of hexoses that was localized to areas of the leaf actively exhibiting resistance responses. The accumulation of hexoses was accompanied by a down-regulation in the expression of Rubisco (rbcS) and chlorophyll a/b binding protein (cab) genes (although to a lesser extent than in a compatible interaction) and with an up-regulation in the expression of the pathogenesis-related protein 1 (PR-1). These results are consistent with a role for invertase in the generation of hexoses, which may supply energy for defence reactions and/or act as signals inducing defence gene expression.  相似文献   

16.
Invertase ( β -fructofuranoside fructohydrolase, EC 3.2.1.26) activity in developing maize ( Zea mays L. inbred W64A) was separated into soluble and particulate forms. The particulate form was solubilized by treatment with 1 M NaCl or with other salts. However, CaCl2 inhibited invertase activity, and neither detergents nor 0.5 M methyl mannoside were effective in solubilizing the invertase activity. The soluble and particulate invertases were both glycoproteins, both had pH optima of 5.0 and Km values for sucrose of 2.83 and 1.84 m M , respectively. The apparent molecular weight of salt-solubilized invertase was 40 kDa. Gel filtration of the soluble invertase showed multiple peaks with apparent molecular weights ranging from 750 kDa to over 9 000 kDa. Histochemical staining of cell wall preparations for invertase activity suggested that the particulate invertase is associated with the cell wall. Also, nearly all the invertase activity was localized in the basal endosperm and pedicel tissues, which are sites of sugar transport. No invertase activity was found in the upper endosperm, the embryo or in the placento-chalazal tissue. In contrast, sucrose synthase (EC 2.4.1.13) activity was found primarily in the embryo and the upper endosperm, which are areas of active biosynthesis of storage compounds.  相似文献   

17.
A simple method of growing plants in agar was exploited to investigate the effect of long-term nitrogen (N) and phosphorus (P) deficiencies on respiratory metabolism and growth in shoots and roots of Nicotiana tabacum seedlings, and their interaction with exogenously supplied sucrose. Levels of hexose phosphates and 3-phosphoglyceric acid (3-PGA) were low in P-deficient shoots and roots and high in N-deficient shoots and roots. The ratio of hexose phosphates to 3-PGA and levels of fructose-2,6-bisphosphate were high in P-deficient plants and low in N-deficient plants. These data reflect differences in the way metabolism was perturbed, yet both deficiencies were associated with increased root growth relative to shoot growth, starch accumulation in the shoots, and soluble carbohydrate accumulation, especially hexoses, in the roots. Enzymes for sucrose degradation (sucrose synthase, acid and alkaline invertase) and glycolysis (phosphofructokinase, pyrophosphate-dependent phospho-fructokinase and pyruvate kinase) remained unaltered or declined in the shoots and roots. The accumulation of hexoses in roots of N- and P-deficient plants may result from maintenance of high invertase activities relative to sucrose synthase and glycolytic enzymes in the roots. The possibility that hexose accumulation may drive preferential root growth osmotically in N and P deficiencies is discussed. The addition of sucrose to roots to further investigate the interaction of carbohydrates with growth and allocation in low N and low P produced clear effects even though endogenous levels of soluble carbohydrate were already high in the nutrient-deficient plants. In complete nutrition, growth was stimulated, protein content particularly of the roots was increased and there was a preferential increase in activity of sucrose synthase in roots. At low P, enzyme activities in roots were increased, including sucrose synthase, and protein content increased, particularly in the roots, but there was no increase in growth. In N-deficient plants, exogenous sucrose led to decreased protein, Rubisco and chlorophyll content in shoots, in contrast to the other conditions, and a higher protein content and a general increase of catabolic enzyme activities and growth in the roots.  相似文献   

18.
Over 40,000 species of plants accumulate fructan, [beta]-2-1- and [beta]-2-6-linked polymers of fructose as a storage reserve. Due to their high fructose content, several commercial applications for fructans have been proposed. However, plants that accumulate these polymers are not agronomically suited for large-scale cultivation or processing. This study describes the transformation of a Bacillus amyloliquefaciens SacB gene into maize (Zea mays L.) callus by particle bombardment. Tissue-specific expression and targeting of the SacB protein to endosperm vacuoles resulted in stable accumulation of high-molecular-weight fructan in mature seeds. Accumulation of fructan in the vacuole had no detectable effect on kernel development or germination. Fructan levels were found to be approximately 9-fold higher in sh2 mutants compared to wild-type maize kernels. In contrast to vacuole-targeted expression, starch synthesis and endosperm development in mature seeds containing a cytosolically expressed SacB gene were severely affected. The data demonstrate that hexose resulting from cytosolic SacB activity was not utilized for starch synthesis. Transgenic seeds containing a chimeric SacB gene provide further evidence that the dominant pathway for starch synthesis in maize endosperm is through uridine diphosphoglucose catalyzed by the enzyme sucrose synthase.  相似文献   

19.
Collective evidence demonstrates that the Miniature1 (Mn1) seed locus in maize encodes an endosperm-specific isozyme of cell wall Invertase, CWI-2. The evidence includes (1) isolation and characterization of ethyl methanesulfonate-induced mn1 mutants with altered enzyme activity and (2) a near-linear relationship between gene/dose and invertase activity and the CWI-2 protein. In addition, molecular analyses showed that the cDNA clone incw2 maps to the Mn1 locus and differentiates the six ethyl methanesulfonate-induced mn1 mutants of independent origin into two classes when RNA gel blot analyses were used. We also report two unexpected observations that provide significant new insight into the physiological role of invertase and its regulation in a developing seed. First, a large proportion of total enzyme activity (~90%) was dispensable (i.e., nonlimiting). However, below the threshold level of ~6% of wild-type activity, the endosperm enzyme controlled both the sink strength of the developing endosperm as well as the developmental stability of maternal cells in the pedicel in a rate-limiting manner. Our data also suggest an unusually tight coordinate control between the cell wall-bound and the soluble forms of invertase, which are most likely encoded by two separate genes, presumably through metabolic controls mediated by the sugars.  相似文献   

20.
Previous investigations in our laboratory have shown that leaf developmental programming in tobacco is regulated by source strength. One hypothesis to explain how source strength is perceived is that hexokinase acts as a sensor of carbohydrate flux to regulate the expression of photosynthetic genes, possibly as a result of sucrose cycling through acid invertase and hexokinase. We have turned to Arabidopsis as a model system to study leaf development and have examined various photosynthetic parameters during the ontogeny of a single leaf on the Arabidopsis rosette grown in continuous light. We found that photosynthetic rates, photosynthetic gene expression, pigment contents and total protein amounts attain peak levels early in the expansion phase of development, then decline progressively as development proceeds. In contrast, the flux of 14CO2 into hexoses increases modestly until full expansion is attained, then falls in the fully expanded leaf. Partitioning of carbon into hexoses versus sucrose increases until full expansion is attained, then falls. The in vitro activities of hexokinase, vacuolar acid invertase, and cell wall acid invertase do not change until the late stages of senescence, when they increase markedly. At this time there are also dramatic increases in hexose pool sizes and in senescence-associated gene (SAG) expression. Taken together, our results suggest that invertase and hexokinase activities do not control the partitioning of label into hexoses during development. We conclude that our data are not readily compatible with a simple model of leaf development, whereby alterations in photosynthetic rates are mediated directly by hexose flux or by hexose pool sizes. Yet, these factors might contribute to the control of gene expression. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号