首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antagonistic effect produced by the detective phage PBSX during cocultivation of the mutant strain B. subtilis 168, in which this phage is heat-inducible, and strain B. subtilis NRS231, which also bears a defective phage, was investigated. As soon as in the first hours of cocultivation under conditions of PBSX induction, the number of viable cells of strain NRS231 decreased by two orders of magnitude. However, the effect was not observed if the temperature of cocultivation was noninducing. The results confirm the supposition that defective phages may play a role in the competition between closely related bacilli.  相似文献   

2.
A new defective phage, designated PBND8, was induced in Bacillus natto strain IAM1207 with bleomycin and mitomycin C. PBND8 particles contained a randomly selected 8 kilobase-pairs (kbp) fragment of the host chromosomal DNA. Electron microscopy showed that PBND8 has a small head with a complex tail structure like PBSX, a defective phage of Bacillus subtilis 168. The PBND8 head, however, is clearly smaller than that of PBSX which contains 13-kbp fragments of the host chromosomal DNA. SDS-polyacrylamide gel electrophoretic analysis revealed that the structural proteins of PBND8 are distinct from those of PBSX and PBSY (PBSZ) of B. subtilis W23. PBND8 exhibited a bacteriocin-like killing activity to the other Bacillus cells.  相似文献   

3.
The defective prophage of Bacillus subtilis 168, PBSX, is a chromosomally based element which encodes a non-infectious phage-like particle with bactericidal activity. PBSX is induced by agents which elicit the SOS response. In a PBSX thermoinducible strain which carries the xhi1479 mutation, PBSX is induced by raising the growth temperature from 37 degrees C to 48 degrees C. A 1.2-kb fragment has been cloned which complements the xhi1479 mutation. The nucleotide sequence of this fragment contains an open reading frame (ORF) which encodes a protein of 113 amino acids (aa). This aa sequence resembles that of other bacteriophage repressors and suggests that the N-terminal region forms a helix-turn-helix motif, typical of the DNA-binding domain of many bacterial regulatory proteins. The ORF is preceded by four 15-bp direct repeats, each of which contains an internal palindromic sequence, and by sequences resembling a SigA-dependent promoter. The nt sequence of an equivalent fragment from the PBSX thermoinducible strain has also been determined. There are three aa differences within the ORF compared to the wild type, one of which lies within the helix-turn-helix segment. This ORF encodes a repressor protein of PBSX.  相似文献   

4.
A mutant of Bacillus subtilis 168 has been isolated in which the defective phage PBSX was heat inducible, whereas another phage, phi105, was not so induced. A culture of the mutant grown at 30 degrees C, when shifted to 45 degrees C, began to lyse after 45 min; cell viability began to decrease after 10 min. Heat-induced lysis of the mutant was prevented by chloramphenicol. DNA, RNA, protein, and peptidoglycan synthesis were normal at the nonpermissive temperature up to the time of lysis. The site of xhi-1479 mutation causing this phenotype was linked (50%) in phage PBS1-mediated transduction to the host marker metC and to another PBSX marker xtl and was thus thought to map within the PBSX prophage. The order of markers was argC-thiB-metA-xhi-metC. The xhi mutation was thus distinct from another mutation, tsi-23, causing a similar heat inducibility of PBSX (Siegel and Marmur, 1969), which was unlinked to the metC marker. tsi-23 is therefore thought to be a host mutation, and the available evidence for a scattered phage genome being the cause of the defective nature of PBSX is thus less tenable. It was shown that the mutant, besides carrying the xhi mutation, also carried another closely linked mutation, xki-1479, which caused the PBSX produced to have no killing activity on the sensitive strain W23. The xki mutation was separated from xhi by recombination.  相似文献   

5.
Bacillus subtilis mutants with lesions in PBSX prophage genes have been isolated. One of these appears to be a regulatory mutant and is defective for mitomycin C-induced derepression of PBSX; the others are defective for phage capsid formation. All of the PBSX structural proteins are synthesized during induction of the capsid defective mutants; however, several of these proteins exhibit abnormal serological reactivity with anti-PBSX antiserum. The two head proteins X4 and X7 are not immunoprecipitable in a mutant which fails to assemble phage head structures. In the tail mutant, proteins X5 and X6 are not immunoprecipitable, tails are not assembled, and a possible tail protein precursor remains uncleaved. The noninducible mutant does not synthesize any PBSX structural proteins after exposure to mitomycin C. The mutation is specific for PBSX since ø105 and SPO2 lysogens of the mutant are inducible. All of the known PBSX-specific mutations were shown to be clustered between argC and metC on the host chromosome. In addition, the metC marker was shown to be present in multiple copies in cells induced for PBSX replication. This suggests that the derepressed prophage replicates while still integrated and that replication extends into the adjacent regions of the host chromosome.  相似文献   

6.
Mutants of Bacillus subtilis with deletions extending from the PBSX prophage, and in some cases removing pro(AB) and metC, have been found to be constitutive for vegetatively synthesized alkaline phosphatase. Such deletions were isolated by selecting for heat-resistant derivatives of a strain carrying a xhi-1479 mutation causing heat-inducibility of the defective phage PBSX. These deletions remove the phoS gene, a regulatory gene for alkaline phosphatase; it is concluded that the phoS gene product exerts negative control on alkaline phosphatase synthesis. Deletion mapping, combined with previously published linkage data, indicates a gene order of PBSX-phoS-pro(AB)-metC.  相似文献   

7.
Particles of PBSX, a defective, noninfectious phage which is inducible from strains of Bacillus subtilis 168, contain at least seven structural proteins resolvable by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Five of these proteins are associated with the phage tail and two with the phage head. An eighth protein, which also may be coded for by the PBSX prophage, has been identified in cells derepressed for PBSX replication.  相似文献   

8.
We have isolated a 5.4-kilobase fragment of Bacillus subtilis DNA that confers the ability to replicate upon a nonreplicative plasmid. The B. subtilis 168 EcoRI fragment was ligated into the chimeric plasmid pCs540, which contains a chloramphenicol resistance determinant from the Staphylococcus aureus plasmid pC194 and an HpaII fragment from the Escherichia coli plasmid, pSC101. A recE B. subtilis derivative, strain BD224, is capable of maintaining this DNA as an autonomously replicating plasmid. In rec+ recipients, chloramphenicol-resistant transformants do not contain free plasmid. The plasmid is integrated as demonstrated by alterations in the pattern of chromosomal restriction enzyme fragments to which the plasmid hybridizes. The site of plasmid integration was mapped by PBS1-mediated transduction to the metC-PBSX region. A strain was a deletion in the region of defective bacteriophage PBSX differs in the hybridization profile obtained by probing EcoRI digests with this cloned fragment. This same deletion mutant, though proficient in normal recombinational pathways, permits autonomous replication of the plasmid apparently owing to the lack of an homologous chromosomal region with which to recombine. We believe that, like E. coli. B. subtilis contains at least one DNA fragment capable of autonomous replication when liberated from its normally integrated chromosomal site and that this cloned DNA fragment comes from the region of defective bacteriophage PBSX.  相似文献   

9.
In a temperature-sensitive mutant of Bacillus subtilis 168, induction of the defective phage PBSX occurred at 48 C. Cell lysis began after 90 min of growth at 48 C, and cell viability began to decrease after 10 to 30 min. The loss in viability at the nonpermissive temperature was prevented by azide or cyanide. Deoxyribonucleic acid (DNA), ribonucleic acid, and protein synthesis were not inhibited at 48 C. Temperature induction of the temperate phage SPO2 also occurred in this mutant. The temperature-sensitive mutation, designated tsi-23, was linked by transduction to purB6 and pig, the order being purB6 pig tsi-23. Mutation tsi-23 was transformable to wild type by B. subtilis 168 DNA but not by DNA from the closely related strains W23 or S31. DNA from the latter two strains transformed auxotrophic markers of strain 168 at frequencies close to those found with 168 donor DNA. Upon temperature induction, cellular DNA was broken to a size of 22S, characteristic of DNA in PBSX particles. The DNA isolated from temperature-induced PBSX did not give an increased Ade(+)/Met(+) transformant ratio relative to cellular DNA nor contain preferential break points as determined by transformation of four closely linked markers.  相似文献   

10.
11.
12.
Bacillus subtilis 168 and its major autolysin mutant, AN8, were shown to excrete two size classes of DNA when cultured in Luria-Bertani medium. Pulsed-field gel electrophoresis of DNA harvested from the cell surface demonstrated the presence of 13-kb-long and circa 50-kb-long strands. Restriction digestion of both sizes of DNA resulted in a smearing pattern, as observed by agarose gel electrophoresis. Shotgun sequencing of DNase I partial digests of 50-kb DNA fragments revealed that the strands originate from various sites on the chromosome. SDS-PAGE analysis of cell surface fractions and culture supernatants demonstrated the presence of several proteins that were thought to be associated with the DNA. Of these, three major proteins were identified, i.e., XkdG, XkdK, and XkdM, by tandem mass spectrometry, all of which were proteins of a defective prophage PBSX residing in the Bacillus subtilis chromosome. Disruption of these PBSX genes resulted in a reduction of 13-kb fragment generation and excretion and also a great reduction of 50-kb fragment excretion. Electron microscopy showed that a few mature phages and numerous membrane vesicle-like particles existed in the cell surface fractions of strain 168. The present findings suggest that the spontaneous generation and excretion of chromosome DNA fragments in Bacillus subtilis are both closely related to the expression of defective prophage genes.  相似文献   

13.
Summary Incubation of thermosensitive dna mutants of Bacillus subtilis at the non-permissive temperature leads in some instances to induction of defective prophage PBSX and cell lysis. A clear distinction can be made between mutants affected in DNA replication at the growing point (extension mutants) and those unable to initiate new rounds of replication (initiation mutants). The former promote PBSX induction to a variable and mutation-specific extent, whereas the latter do not exhibit any signs of induction. Analysis of mutants carrying two dna mutations suggests that products of some dna genes involved in initiation and in extension are not essential for induction but can substantially amplify its extent. However, mitomycin C treatment of dna mutants which have completed their residual DNA synthesis leads to a PBSX induction essentially identical to that obtained by mitomycin C treatment of the wild-type strain, which precludes an essential role for any of the mutated proteins in this induction process. On the basis of our observations we propose that the induction signal is related to the number of blocked replication forks: the larger that number, the higher the proportion of induced cells within the population.  相似文献   

14.
The structural maintenance of chromosome (Smc) protein is highly conserved and involved in chromosome compaction, cohesion, and other DNA-related processes. In Bacillus subtilis, smc null mutations cause defects in DNA supercoiling, chromosome compaction, and chromosome partitioning. We investigated the effects of smc mutations on global gene expression in B. subtilis using DNA microarrays. We found that an smc null mutation caused partial induction of the SOS response, including induction of the defective prophage PBSX. Analysis of SOS and phage gene expression in single cells indicated that approximately 1% of smc mutants have fully induced SOS and PBSX gene expression while the other 99% of cells appear to have little or no expression. We found that induction of PBSX was not responsible for the chromosome partitioning or compaction defects of smc mutants. Similar inductions of the SOS response and PBSX were observed in cells depleted of topoisomerase I, an enzyme that relaxes negatively supercoiled DNA.  相似文献   

15.
After heat-induction of the defective phage PBSX in a xhi-1479 mutant of Bacillus subtilis 168, the culture lysed rapidly even if the lyt-2 mutation was present (which greatly reduces the amount of the bacterial autolysins). Two lytic enzymes, an N-acetylmuramoyl-L-alanine amidase and an endo-N-acetylmuramidase, were purified from the culture supernatant. The amidase was readily distinguished from the bacterial amidase by its low molecular weight. In addition, it was not inhibited by antibody directed against the bacterial enzyme. These results indicate that PBSX does not rely on the bacterial autolysins to accomplish lysis.  相似文献   

16.
李宁  陈永福 《遗传学报》1995,22(6):478-486
本研究利用聚合酶链式反应技术,成功地克隆了枯草芽孢杆菌缺陷型原噬菌体PBSX阻遏基因及其温度敏感型等位基因。核苷酸序列分析发现,野生型及其温度敏感型阻遏基因之间的碱基变异较大,但却存在几乎完全相同的开放读框,尤其是开放读框orfⅠ,可能编码着113个氨基酸的阻遏蛋白,并且还推定了开放读框的启动区和核糖体结合位点。通过互补实验,证实了野生型阻遏基因的产物能够抑制温度诱导PBSX原噬菌体,表明克隆的基因有着正常的生物活性。  相似文献   

17.
DNA of defective bacteriophage PBSX was studied by electron microscopy. The presence and distribution of sites containing local structure changes were revealed using antibodies specific for the DNA molecules modified in situ. These structural changes are related to the capsid geometry, but not to the DNA primary sequence.  相似文献   

18.
Defective bacteriophage PBSX, a resident of all Bacillus subtilis 168 chromosomes, packages fragments of DNA from all portions of the host chromosome when induced by mitomycin C. In this study, the physical process for DNA packaging of both chromosomal and plasmid DNAs was examined. Discrete 13-kilobase (kb) lengths of DNA were packaged by wild-type phage, and the process was DNase I resistant and probably occurred by a head-filling mechanism. Genetically engineered isogenic host strains having a chloramphenicol resistance determinant integrated as a genetic flag at two different regions of the chromosome were used to monitor the packaging of specific chromosomal regions. No dramatic selectivity for these regions could be documented. If the wild-type strain 168 contains autonomously replicating plasmids, especially pC194, the mitomycin C induces an increase in size of resident plasmid DNA, which is then packaged as 13-kb pieces into phage heads. In strain RB1144, which lacks substantial portions of the PBSX resident phage region, mitomycin C treatment did not affect the structure of resident plasmids. Induction of PBSX started rolling circle replication on plasmids, which then became packaged as 13-kb fragments. This alteration or cannibalization of plasmid replication resulting from mitomycin C treatment requires for its function some DNA within the prophage deletion of strain RB1144.  相似文献   

19.
A genetic marker responsible for the killing activity of PBSX, a defective phage carried by Bacillus subtilis 168, has been located on the bacterial chromosome. Two mutant strains of B. subtilis 168, which produced tailless phage particles upon mitomycin C induction, were shown to carry lesions, designated xtl-1 and xtl-2, which were linked by transformation and PBS1-mediated transduction to metC. The link-age relationship between xtl and adjacent auxotrophic markers was determined by three-factor PBS1 transduction, the suggested order of markers being argO 1 metA metC xtl.  相似文献   

20.
PBSX is a phage-like bacteriocin (phibacin) of Bacillus subtilis 168. Bacteria carrying the PBSX genome are induced by DNA-damaging agents to lyse and produce PBSX particles. The particles cannot propagate the PBSX genome. The particles produced by this suicidal response kill strains nonlysogenic for PBSX. A 5.2-kb region which controls the induction of PBSX has been sequenced. The genes identified include the previously identified repressor gene xre and a positive control factor gene, pcf. Pcf is similar to known sigma factors and acts at the late promoter PL, which has been located distal to pcf. The first two genes expressed from the late promoter show homology to genes encoding the subunits of phage terminases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号