首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity and recognition of tRNA-modifying enzymes may be accounted for in part by nucleotide sequences which are localized next to the modifiable nucleoside. In order to determine the sequence specificity of tRNA-modifying enzymes, we have surveyed 55 published tRNA sequences from Escherichia coli, Salmonella typhimurium and T4 phage. For each modified nucleoside, the nucleotide sequence surrounding the modification site was determined for all tRNAs known to contain the modified nucleoside. Subsequently all tRNAs not containing the modified nucleoside were examined for the absence of the putative recognition site. We present the detailed analysis of 12 modified nucleosides for which we found a strong correlation between the modified nucleoside and the local nucleotide sequence. This suggests that these sequences may be recognition sites for tRNA-modifying enzymes. For each of the 12 modified nucleosides we have indentified a recognition sequence present in the tRNA set containing the modification and not in the set without it. All 203 other published tRNA sequences were then examined to see if the sequence specificity rules apply to other organisms, including both prokaryotes and eukaryotes. In several cases a good adherence was found, indicating conservation of the putative recognition sequences.  相似文献   

2.
A number of experimental approaches have been developed for identification of recognition (identity) sites in tRNAs. Along with them a theoretical methodology has been proposed by McClain et al that is based on concomitant analysis of all tRNA sequences from a given species. This approach allows an evaluation of nucleotide combinations present in isoacceptor tRNAs specific for the given amino acid, and not present in equivalent positions in cloverleaf structure in other tRNAs of the same organism. These elements predicted from computer analysis of the databank could be tested experimentally for their participation in forming recognition sites. The correlation between theoretical predictions and experimental data appeared promising. The aim of the present work consisted of introducing further improvements into McClain's procedure by: i), introducing into analysis a variable region in tRNAs which had not been previously considered; to accomplish this, 'normalization' of variable nucleotides was suggested, based on primary and tertiary structures of tRNAs; ii), developing a new procedure for comparison of patterns for synonymous and non-synonymous tRNAs from different organisms; iii), analysis of 3- and 4-positional contacts between tRNAs and enzymes in addition to a formerly used 2-positional model. A systematic application of McClain's procedure to mammalian, yeast and E coli tRNAs led to the following results: i), imitancy patterns for non-synonymous tRNAs of any amino acid specificity and from any organisms analysed so far overlap by no more than 30%, providing a structural basis for discrimination with high fidelity between cognate and non-cognate tRNAs; ii), the predicted identity sites are non-randomly distributed within tRNA molecules; the dominant role is ascribed to only two regions--anticodon and amino acid stem which are located far apart from one another at extremes of all tRNA molecules; iii), the imitancy patterns for synonymous tRNAs in lower (yeast) and higher (mammalian) eukaryotes are similar but not identical; iv), distribution of predicted identity sites in the cloverleaf structure in prokaryotes and eukaryotes is essentially different: in eubacterial tRNAs the major role in recognition plays anticodon and/or amino acid acceptor stem, whereas in eukaryotic (both unicellular and multicellular) tRNAs the remaining part of the molecules is also involved in recognition; v), the imitancy patterns of synonymous tRNAs from prokaryotes and eukaryotes are dissimilar, this observation leads to the prediction that the tRNA identity sites for the same amino acid in prokaryotes and eukaryotes may differ.  相似文献   

3.
The molecular machinery for incorporating selenocysteine into proteins is present in both prokaryotes and eukaryotes. Although selenocysteine insertion has been reported in animals, plants, and protozoans, known eukaryotic selenocysteine tRNA sequences and selenocysteine insertion sequences are limited to animals and plants. Here we present clear indications of the presence of selenocysteine-tRNA and a selenocysteine insertion sequence in Plasmodium falciparum. To our knowledge, this is the first report of an identification of protozoan selenocysteine insertion machinery at the sequence level.  相似文献   

4.
5.
RNA base pairing between the initiation codon and anticodon loop of initiator tRNA is essential but not sufficient for the selection of the 'correct' mRNA translational start site by ribosomes. In prokaryotes, additional RNA interactions between small ribosomal subunit RNA and mRNA sequences just upstream of the start codon can efficiently direct the ribosome to the initiation site. Although there is presently no proof for a similar important ribosomal RNA interaction in eukaryotes, the 5' non-coding regions of their mRNAs and 'consensus sequences' surrounding initiation codons have been shown to be strong determinants for initiation-site selection, but the exact mechanisms are not yet understood. Intramolecular base pairing in mRNA and participation of translation initiation factors can strongly influence the formation of mRNA–small ribosomal subunit–initiator tRNA complexes and modulate translational activities in both prokaryotes and eukaryotes. Only recently has it been appreciated that alternative mechanisms may also contribute to the selection of initiation codons in all organisms. Although direct proof is currently lacking, there is accumulating evidence that additional cis -acting mRNA elements and trans -acting proteins may form specific 'bridging' interactions with ribosomes during translation initiation.  相似文献   

6.
7.
8.
The mitochondrial genome of Trypanosoma brucei does not encode tRNAs. Consequently, all mitochondrial tRNAs are imported from the cytosol and originate from nucleus-encoded genes. Analysis of all currently available T. brucei sequences revealed that its genome carries 50 tRNA genes representing 40 different isoacceptors. The identified set is expected to be nearly complete since all but four codons are accounted for. The number of tRNA genes in T. brucei is very low for a eukaryote and lower than those of many prokaryotes. Using quantitative Northern analysis we have determined the absolute abundance in the cell and the mitochondrion of a group of 15 tRNAs specific for 12 amino acids. Except for the initiator type tRNA(Met), which is cytosol specific, the cytosolic and the mitochondrial sets of tRNAs were qualitatively identical. However, the extent of mitochondrial localization was variable for the different tRNAs, ranging from 1 to 7.5% per cell. Finally, by using transgenic cell lines in combination with quantitative Northern analysis it was shown that import of tRNA(Leu)(CAA) is independent of its 5'-genomic context, suggesting that the in vivo import substrate corresponds to the mature, fully processed tRNA.  相似文献   

9.
Low-molecular weight RNA (LMW RNA) analysis using staircase electrophoresis was performed for several species of eukaryotic and prokaryotic microorganisms. According to our results, the LMW RNA profiles of archaea and bacteria contain three zones: 5S RNA, class 1 tRNA and class 2 tRNA. In fungi an additional band is included in the LMW RNA profiles, which correspond to the 5.8S RNA. In archaea and bacteria we found that the 5S rRNA zone is characteristic for each genus and the tRNA profile is characteristic for each species. In eukaryotes the combined 5.8S and 5S rRNA zones are characteristic for each genus and, as in prokaryotes, tRNA profiles are characteristic for each species. Therefore, stable low molecular weight RNA, separated by staircase electrophoresis, can be considered a molecular signature for both prokaryotic and eukaryotic microorganisms. Analysis of the data obtained and construction of the corresponding dendrograms afforded relationships between genera and species; these were essentially the same as those obtained with 16S rRNA sequencing (in prokaryotes) and 18S rRNA sequencing (in eukaryotes).  相似文献   

10.
Translation elongation is an accurate and rapid process, dependent upon efficient juxtaposition of tRNAs in the ribosomal A- and P-sites. Here, we sought evidence of A- and P-site tRNA interaction by examining bias in codon pair choice within open reading frames from a range of genomes. Three distinct and marked effects were revealed once codon and dipeptide biases had been subtracted. First, in the majority of genomes, codon pair preference is primarily determined by a tetranucleotide combination of the third nucleotide of the P-site codon, and all 3 nt of the A-site codon. Second, pairs of rare codons are generally under-used in eukaryotes, but over-used in prokaryotes. Third, the analysis revealed a highly significant effect of tRNA-mediated selection on codon pairing in unicellular eukaryotes, Bacillus subtilis, and the gamma proteobacteria. This was evident because in these organisms, synonymous codons decoded in the A-site by the same tRNA exhibit significantly similar P-site pairing preferences. Codon pair preference is thus influenced by the identity of A-site tRNAs, in combination with the P-site codon third nucleotide. Multivariate analysis identified conserved nucleotide positions within A-site tRNA sequences that modulate codon pair preferences. Structural features that regulate tRNA geometry within the ribosome may govern genomic codon pair patterns, driving enhanced translational fidelity and/or rate.  相似文献   

11.
The mechanism of selenocysteine incorporation in eukaryotes has been assumed for almost a decade to be inherently different from that in prokaryotes, due to differences in the architecture of selenoprotein mRNAs in the two kingdoms. After extensive efforts in a number of laboratories spanning the same time frame, some of the essential differences between these mechanisms are finally being revealed, through identification of the factors catalyzing cotranslational selenocysteine insertion in eukaryotes. A single factor in prokaryotes recognizes both the selenoprotein mRNA, via sequences in the coding region, and the unique selenocysteyl-tRNA, via both its secondary structure and amino acid. The corresponding functions in eukaryotes are conferred by two distinct but interacting factors, one recognizing the mRNA, via structures in the 3' untranslated region, and the second recognizing the tRNA. Now, with these factors in hand, crucial questions about the mechanistic details and efficiency of this intriguing process can begin to be addressed.  相似文献   

12.
13.

Background  

Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes.  相似文献   

14.
The maturation of tRNA precursors involves the 5′ cleavage of leader sequences by an essential endonuclease called RNase P. Beyond the ancestral ribonucleoprotein (RNP) RNase P, a second type of RNase P called PRORP (protein‐only RNase P) evolved in eukaryotes. The current view on the distribution of RNase P in cells is that multiple RNPs, multiple PRORPs or a combination of both, perform specialised RNase P activities in the different compartments where gene expression occurs. Here, we identify a single gene encoding PRORP in the green alga Chlamydomonas reinhardtii while no RNP is found. We show that its product, CrPRORP, is triple‐localised to mitochondria, the chloroplast and the nucleus. Its downregulation results in impaired tRNA biogenesis in both organelles and the nucleus. CrPRORP, as a single‐subunit RNase P for an entire organism, makes up the most compact and versatile RNase P machinery described in either prokaryotes or eukaryotes.  相似文献   

15.
We have studied the statistical constraints on synonymous codon choice to evaluate various proposals regarding the origin of the bias in synonymous codon usage observed by Fiers et al. (1975), Air et al. (1976), Grantham et al. (1980) and others. We have determined the statistical dependence of the degenerate third base on either of its nearest neighbors in mitochondrial, prokaryotic, and eukaryotic coding sequences. We noted an increasing dependence of the third base on its nearest neighbors in moving from mitochrondria to prokaryotes to eukaryotes.A statistical model assuming random equiprobable selection of synonymous codons was found grossly adequate for the mitochondria, but totally indequate for prokaryotes and eukaryotes. A model assuming selection of synonymous codons reflecting a genomic strategy, i.e. the genome hypothesis of Grantham et al. (1980), gave a good approximation of the mitochondrial sequences. A statistical model which exactly maintains codon frequency, but allows the position of corresponding synonymous codons to vary was only grossly adequate for prokaryotes and totally inadequate for eukaryotes. The results of these simulations are consistent with the measures on experimental sequences and suggest that a “frequency constraint” model such as that of Grantham et al. (1980) may be an adequate explanation of the codon usage in mitochondria. However, in addition to this frequency constraint, there may be constraints on synonymous codon choice in prokaryotes due to codon context. Furthermore, any proposal to explain codon usage in eukaryotes must involve a constraint on the context of a codon in the sequence.  相似文献   

16.
Shao ZQ  Zhang YM  Feng XY  Wang B  Chen JQ 《PloS one》2012,7(3):e33547

Background

In yeast coding sequences, once a particular codon has been used, subsequent occurrence of the same amino acid tends to use codons sharing the same tRNA. Such a phenomenon of co-tRNA codons pairing bias (CTCPB) is also found in some other eukaryotes but it is not known whether it occurs in prokaryotes.

Methodology/Principal Findings

In this study, we focused on a total of 773 bacterial genomes to investigate their synonymous codon pairing preferences. After calculating the actual frequencies of synonymous codon pairs and comparing them with their expected values, we detected an obvious pairing bias towards identical codon pairs. This seems consistent with the previously reported CTCPB phenomenon, since identical codons are certainly read by the same tRNA. However, among co-tRNA but non-identical codon pairs, only 22 were often found overrepresented, suggesting that many co-tRNA codons actually do not preferentially pair together in prokaryotes. Therefore, the previously reported co-tRNA codons pairing rule needs to be more rigorously defined. The affinity differences between a tRNA anticodon and its readable codons should be taken into account. Moreover, both within-gene-shuffling tests and phylogenetic analyses support the idea that translational selection played an important role in shaping the observed synonymous codon pairing pattern in prokaryotes.

Conclusions

Overall, a high level of synonymous codon pairing bias was detected in 73% investigated bacterial species, suggesting the synonymous codon ordering strategy has been prevalently adopted by prokaryotes to improve their translational efficiencies. The findings in this study also provide important clues to better understand the complex dynamics of translational process.  相似文献   

17.
We have determined the nucleotide sequences of thirteen rat mt tRNA genes. The features of the primary and secondary structures of these tRNAs show that those for Gln, Ser, and f-Met resemble, while those for Lys, Cys, and Trp depart strikingly from the universal type. The remainder are slightly abnormal. Among many mammalian mt DNA sequences, those of mt tRNA genes are highly conserved, thus suggesting for those genes an additional, perhaps regulatory, function. A simple evolutionary relationship between the tRNAs of animal mitochondria and those of eukaryotic cytoplasm, of lower eukaryotic mitochondria or of prokaryotes, is not evident owing to the extreme divergence of the tRNA sequences in the two groups. However, a slightly higher homology does exist between a few animal mt tRNAs and those from prokaryotes or from lower eukaryotic mitochondria.  相似文献   

18.
Discrepancies in phylogenetic trees of bacteria and archaea are often explained as lateral gene transfer events. However, such discrepancies may also be due to phylogenetic artifacts or orthology assignment problems. A first step that may help to resolve this dilemma is to estimate the extent of phylogenetic inconsistencies in trees of prokaryotes in comparison with those of higher eukaryotes, where no lateral gene transfer is expected. To test this, we used 21 proteomes each of eukaryotes (mainly opisthokonts), proteobacteria, and archaea that spanned equivalent levels of genetic divergence. In each domain of life, we defined a set of putative orthologous sequences using a phylogenetic-based orthology protocol and, as a reference topology, we used a tree constructed with concatenated genes of each domain. Our results show, for most of the tests performed, that the magnitude of topological inconsistencies with respect to the reference tree was very similar in the trees of proteobacteria and eukaryotes. When clade support was taken into account, prokaryotes showed some more inconsistencies, but then all values were very low. Discrepancies were only consistently higher in archaea but, as shown by simulation analysis, this is likely due to the particular tree of the archaeal species used here being more difficult to reconstruct, whereas the trees of proteobacteria and eukaryotes were of similar difficulty. Although these results are based on a relatively small number of genes, it seems that phylogenetic reconstruction problems, including orthology assignment problems, have a similar overall effect over prokaryotic and eukaryotic trees based on single genes. Consequently, lateral gene transfer between distant prokaryotic species may have been more rare than previously thought, which opens the way to obtain the tree of life of bacterial and archaeal species using genomic data and the concatenation of adequate genes, in the same way as it is usually done in eukaryotes.  相似文献   

19.
The last ten years have seen a dramatic increase in our understanding of the molecular mechanism allowing specific incorporation of selenocysteine into selenoproteins. Whether in prokaryotes or eukaryotes, this incorporation requires several gene products, among which the specialized elongation factor SelB and the tRNA(Sec) play a pivotal role. While the molecular actors have been discovered and their role elucidated in the eubacterial machinery, recent data from our and other laboratories pointed to a higher degree of complexity in archaea and eukaryotes. These findings also revealed that more needs to be discovered in this area. This review will focus on phylogenetic aspects of the SelB proteins. In particular, we will discuss the concerted evolution that occurred within the SelB/tRNA(Sec) couples, and also the distinctive roles carried out by the SelB C-terminal domains in eubacteria on the one side, and archaea and eukaryotes, on the other.  相似文献   

20.
Rapoport AE  Trifonov EN 《Gene》2011,488(1-2):41-45
Linguistic (word count) analysis of prokaryotic genome sequences, by Shannon N-gram extension, reveals that the dominant hidden motifs in A+T rich genomes are T(A)(T)A and G(A)(T)C with uncertain number of repeating A and T. Since prokaryotic sequences are largely protein-coding, the motifs would correspond to amphipathic alpha-helices with alternating lysine and phenylalanine as preferential polar and non-polar residues. The motifs are also known in eukaryotes, as nucleosome positioning patterns. Their existence in prokaryotes as well may serve for binding of histone-like proteins to DNA. In this case the above patterns in prokaryotes may be considered as "anticipated" nucleosome positioning patterns which, quite likely, existed in prokaryotic genomes before the evolutionary separation between eukaryotes and prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号