首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although MAP kinase is an important regulatory enzyme in many somatic cells, almost nothing is known about its functions during meiosis, except in frog and mouse oocytes. We investigated MAPK activation and function in oocytes of the marine worm Urechis caupo that are fertilized at meiotic prophase. Activity was first detected at 4-6 min after fertilization in immunoblots with anti-active MAPK, prior to germinal vesicle breakdown (GVBD). MAPK activation did not require new protein synthesis and was dependent on the increases in both intracellular pH and intracellular Ca(2+) that normally occur during activation. When MAPK activation was inhibited with PD98059 or U0126, GVBD still occurred, but meiosis was abnormal and there was a dramatic premature enlargement of sperm asters, which normally do not appear until second polar body formation. Failure of polar body formation and premature sperm aster enlargement also occurred when MAPK activation was inhibited by an entirely different treatment which involved lowering the pH of external seawater to interrupt the normal cytoplasmic pH increase. Thus, in Urechis, active MAPK appears to be required for (1) normal meiotic divisions and (2) suppressing the paternal centrosome until after the egg completes meiosis, a general phenomenon whose mechanism has been unknown.  相似文献   

2.
The objective of the present study was to investigate if MAPK can be activated by a non-receptor agonist KCl, which depolarizes membrane to increase intracellular Ca(2+) and contracts cerebral arteries. Rabbit basilar arteries were used in isometric tension and western blot analysis studies. KCl produced a concentration-dependent contraction and an elevation of phospho-MAPK, which can be abolished by nicardipine, a voltage-dependent Ca(2+) channel blocker, and by PD98059 or U0126, MAPK kinase inhibitors. Thus, MAPK can be activated by the elevation of intracellular Ca(2+), independent of the activation of either G-protein coupled receptors or receptor tyrosine kinase. KCl which not only depolarizes membrane potentials, opens voltage-dependent Ca(2+), and increases intracellular Ca(2+), but also, probably by elevation of intracellular Ca(2+), triggers the activation of MAPK which seems responsible for a predominant part of the contraction of KCl in the rabbit basilar arteries.  相似文献   

3.
4.
In order to understand the mechanism by which mitogen-activated protein kinase (MAPK) regulates fertilization, we examined the effect of the MAPK pathway inhibitor U0126 on polyspermy, cortical granule reaction and mitosis in bovine oocytes during and after fertilization. Oocytes were treated with 30 microM U0126 for 30 min prior to insemination, or from 15 to 27 hr following insemination. Western blotting with antibodies that detect active, phosphorylated MAPK revealed that MAPK activity was decreased in U0126 treated oocytes. Oocytes that were treated with U0126 before insemination displayed a significantly higher incidence of polyspermic penetration and incomplete cortical granule reaction than that observed in untreated oocytes (P < 0.05). Exposure of oocytes to 30microM U0126 15-27 hr after insemination induced aberrant microtubule assembly and cell division, often resulting in the formation of two or three daughter cells with altered shapes and sizes. These results suggest that an ERK-like cascade is part of a mechanism that controls cortical granule reaction and the formation of the mitotic spindle following sperm penetration in the bovine.  相似文献   

5.
6.
It has been suggested that A(3) adenosine receptors (ARs) play a role in the pathophysiology of cerebral ischemia with dual and opposite neuroprotective and neurodegenerative effects. This could be due to a receptor regulation mediated by rapid phosphorylation and desensitization carried out by intracellular kinases. In this study, we investigated the involvement of extracellular regulated kinase (ERK 1 and 2), members of the mitogen-activated protein kinase (MAPK) family, in A(3) AR phosphorylation. A(3) AR mediated the activation of ERK 1/2 with a typical transient monophasic kinetics (5 min). The activation was not affected by hypertonic sucrose cell pre-treatment, suggesting that this effect occurred independently of receptor internalization. The involvement of MAPK cascade in the A(3) AR regulation process was evaluated using two well-characterized MAPK kinase inhibitors, PD98059 (2-(2'-amino-3'-methoxyphenyl)oxanaphthalen-4-one) and U0126 (1,4-diamino-2,3-dicyano-1,4-bis (aminophenylthio) butadiene). The exposure of cells to PD98059 prevented MAPK activation and inhibited homologous A(3) AR desensitization and internalization, impairing agonist-mediated receptor phosphorylation. PD98059 inhibited the membrane translocation of G protein-coupled receptor kinase (GRK(2)), which is involved in A(3) AR homologous phosphorylation, suggesting this kinase as a target for the MAPK cascade.On the contrary, the chemically unrelated inhibitor of the MAPK cascade, U0126, did not significantly affect GRK(2) membrane translocation or receptor internalization. Nevertheless, the inhibitor induced a significant impairment of receptor phosphorylation and desensitization. These results suggested that the MAPK cascade is involved in A(3) AR regulation by a feedback mechanism which controls GRK(2) activity and probably involves a direct receptor phosphorylation.  相似文献   

7.
We reported previously that inhibition of MAP kinase during meiosis in Urechis caupo eggs caused premature sperm aster formation and we reviewed indirect evidence that the suppression of sperm asters by MAPK during meiosis might be a universal mechanism (M. C. Gould and J. L. Stephano, 1999, Dev. Biol. 216, 348-358). We tested this proposition with oyster (Crassostrea gigas) and starfish (Asterina miniata) eggs, utilizing the MEK inhibitors U0126 and PD98059. Centrosomes, asters, and meiotic spindles were visualized by normal epifluorescence and confocal microscopy following indirect immunocytochemical staining for anti-beta-tubulin. When MAPK activation was inhibited, sperm asters in both species developed prematurely and tended to move toward the egg centrosomes, sometimes even fusing with the egg spindle or centrosomes. Meiotic spindles and polar body formation were also abnormal when MAPK was inhibited.  相似文献   

8.
The effect of the p42/44 mitogen-activated kinase (MAPK) inhibitor, PD98059, on MAPK activation and meiosis resumption in mouse oocytes was studied. When germinal vesicle (GV)-stage denuded oocytes (DOs) were cultured continuously in 50 microM PD98059, germinal vesicle breakdown (GVBD) was postponed for 2-3 h. MAPK phosphorylation and activation was delayed as well. However, PD98059 did not impair histone H1 kinase activation. After 14 h of culture there was no significant difference in the rate of DOs reaching metaphase II (MII) arrest in either control or experimental conditions. The effect of PD98059 on MAPK inhibition was further tested in epidermal growth factor (EGF)-treated oocytecumulus complexes (OCCs). Exposure of GV-stage OCCs for 5 min to EGF (10 ng/ml) induced a considerable increase in MAPK phosphorylation. After OCCs were further cultured in 50 microM PD98059 a rapid dephosphorylation of MAPK was induced. Already after 1 min of treatment the non-phosphorylated form of MAPK dominated, indicating the high effectivity of PD98059. This result indicates that short EGF/PD98059 treatment of OCCs induced MAPK phosphorylation/dephosphorylation in cumulus cells only. As only a transient delay in MAPK phosphorylation and activation was observed in PD98059-treated DOs we conclude that there is also another PD98059-nonsensitive pathway(s) leading to MAPK activation in mouse oocytes. The data obtained suggest that meiosis resumption in mouse oocytes is somehow influenced by the MEK/MAPK activation pathway.  相似文献   

9.
Chen S  Xu Y  Xu B  Guo M  Zhang Z  Liu L  Ma H  Chen Z  Luo Y  Huang S  Chen L 《Journal of neurochemistry》2011,119(5):1108-1118
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.  相似文献   

10.
AIMS: In this study we investigated the effects of P2 receptors in the regulation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in human umbilical vein endothelial cells (HUVEC). METHODS: Cytosolic Ca(2+) concentration ([Ca(2+)](i)) was measured using fura-2/AM, and MAPK/ ERK phosphorylation using Western blot analysis. RESULTS: ATP, 2-meSATP, UTP and UDP cause a rapid and transitory increase in the phosphorylation of MAPK/ERK. In contrast, negligible response was seen for a,Beta-meATP, a general P2X receptors agonist. ATP-dependent activation of MAPK/ERK was prevented by pretreatment of HUVEC with pertussis toxin or MEK inhibitor PD98059. In addition, activation of the MAPK/ ERK cascade by ATP was blocked in cells pretreated with wortmannin and LY294002, but not by U73122, BAPTA or a Ca(2+)-free medium. Furthermore, an inhibition of ATP-dependent MAPK/ERK phosphorylation was observed in HUVEC pretreated with high doses of GF109203X or myristoylated PKC- zeta pseudosubstrate. Similar results were observed when cells were pretreated with the Src tyrosine kinase inhibitor PP2. However, ATP-stimulated MAPK/ERK activation was unaffected in cells pretreated with AG1478 or perillic acid. We also found that ATP stimulates both the phosphorylation of 3- phosphoinositide-dependent protein kinase-1 (PDK1) and its translocation to plasma membrane in a time-dependent manner. CONCLUSION: These observations suggest that the effects mediated by ATP in HUVEC occur via PTX-sensitive G-protein-coupled P2Y receptors through PI3K-dependent mechanisms, in which PDK1 and PKC-zeta are two key molecules within signal cascade leading to MAPK/ERK activation.  相似文献   

11.
Fusion of nucleoli or nucleolus precursor bodies (NPBs) has been observed during somatic cell interphase and pronuclear development of human zygotes; however, the underlying mechanism is unknown. NPB fusion and its regulation by mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) were studied in activated mouse oocytes. Small NPBs appeared about 4 h after ethanol activation, and took about 1.5 h to fuse into a large NPB, which persisted for about 10 h before disappearance. Analysis of the temporal windows for kinase action indicated that a high MAPK activity during the first 2 h and a low MPF activity during the first 3-4 h after activation were essential for subsequent NPB fusion. A preactivation decline in MAPK activity was associated with decreased NPB fusion following activation of aged oocytes. While MAPK inactivation by regulator U0126 prevented NPB fusion in oocytes activated by ethanol or 5 min Sr2+ treatments, it had no effect on oocytes fertilized or activated by 6 h Sr2+ treatment. In most cases, while rates of pronuclear formation did not differ, rates of NPB fusion differed significantly between different treatments. Our results suggest that: (i) the MAPK and MPF activities at the initial stage of activation regulate NPB fusion after pronuclear formation; (ii) pronuclear assembly and NPB fusion are two separable events that might be controlled by different mechanisms; and (iii) high MAPK activity and low MPF activity at the initial stage of activation is essential for NPB fusion when only one calcium rise is induced by ethanol, while inhibition of MAPK activity does not affect NPB fusion when the repetitive intracellular Ca2+ rises are induced after fertilization.  相似文献   

12.
13.
Mitogen-activated protein kinase (MAPK) becomes activated during the meiotic maturation of pig oocytes, but its physiological substrate is unknown. The 90-kDa ribosome S6 protein kinase (p90rsk) is the best known MAPK substrate in Xenopus and mouse oocytes. The present study was designed to investigate the expression, phosphorylation, subcellular localization, and possible roles of p90rsk in porcine oocytes during meiotic maturation, fertilization, and parthenogenetic activation. This kinase was partially phosphorylated in oocytes at germinal vesicle (GV) stage through a MAPK-independent mechanism, but its full phosphorylation is dependent on MAPK activity. After fertilization or electrical activation, p90rsk was dephosphorylated shortly before pronucleus formation, which coincided with the inactivation of MAPK. A protein phosphatase inhibitor, okadaic acid, accelerated the phosphorylation of p90rsk during meiotic maturation and induced its rephosphorylation in activated eggs. MAPK kinase (MAPKK or MEK) inhibitor U0126 inhibited the activation of MAPK and p90rsk in both cumulus-enclosed and denuded pig oocytes, but prevented GV breakdown (GVBD) only in cumulus-enclosed oocytes. Active MAPK and p90rsk were detected in pig cumulus cells, and U0126 induced their dephosphorylation. In meiosis II arrested eggs, U0126 led to the inactivation of MAPK and p90rsk, as well as the interphase transition of the eggs. P90rsk was distributed evenly in GV oocytes, but it accumulated in the nucleus before GVBD. It was localized to the meiotic spindle after GVBD and concentrated in the spindle mid zone during emission of the polar bodies. All these results suggest that p90rsk is downstream of MAPK and plays functional roles in the regulation of nuclear status and microtubule organization. Although MAPK and p90rsk activity are not essential for the spontaneous meiotic resumption in denuded oocytes, activation of this cascade in cumulus cells is indispensable for the gonadotropin-induced meiotic resumption of pig oocytes.  相似文献   

14.
Agonist exposure of many G protein-coupled receptors stimulates an activation of extracellular signal-regulated protein kinases (ERKs) 1 and 2, members of the mitogen-activated protein kinase (MAPK) family. Here, we show that treatment of human embryonic kidney (HEK) 293 cells stably transfected to express the rat micro-opioid receptor (MOR1) with [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO) stimulated a rapid and transient (3-5-min) activation and nuclear translocation of MAPK. Exposure of these cells to the MAPK kinase 1 inhibitor PD98059 not only prevented MAPK activation but also inhibited homologous desensitization of the mu-opioid receptor. We have therefore determined the effect of PD98059 on agonist-induced mu-receptor phosphorylation. DAMGO stimulated a threefold increase in MOR1 phosphorylation within 20 min that could be reversed by the antagonist naloxone. PD98059 produced a dose-dependent inhibition of agonist-promoted mu-receptor phosphorylation with an IC50 of 20 microM. DAMGO also induced MOR1 internalization that peaked at 30 min. Confocal microscopy revealed that DAMGO-induced MOR1 internalization was also largely inhibited in the presence of PD98059. U0126, another chemically unrelated inhibitor of the MAPK cascade, mimicked the effect of PD98059 on mu-receptor phosphorylation and desensitization. MOR1 itself, however, appears to be a poor substrate for MAPK because mu-receptors immunoprecipitated from stably transfected HEK 293 cells were not phosphorylated by exogenous ERK 2 in vitro. The fact that morphine also triggered MAPK activation but did not induce MOR1 internalization indicates that receptor internalization was not required for MOR1-mediated mitogenic signaling. We conclude that MOR1 stimulates a rapid and intemalization-independent MAPK activation. Activation of the MAPK cascade in turn may not only relay mitogenic signals to the nucleus but also trigger initial events leading to phosphorylation and desensitization of the mu-opioid receptor.  相似文献   

15.
The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.  相似文献   

16.
Extracellular signal-regulated kinases such as ERK1 [p44 mitogen-activated protein kinase (MAPK)] and ERK2 (p42 MAPK) are activated in the CNS under physiological and pathological conditions such as ischemia and epilepsy. Here, we studied the activation state of ERK1/2 in rat hippocampal slices during application of the K(+) channel blocker 4-aminopyridine (4AP, 50 micro m), a procedure that enhances synaptic transmission and leads to the appearance of epileptiform activity. Hippocampal slices superfused with 4AP-containing medium exhibited a marked activation of ERK1/2 phosphorylation that peaked within about 20 min. These effects were not accompanied by changes in the activation state of c-Jun N-terminal kinase (JNK), another member of the MAP kinase superfamily. 4AP-induced ERK1/2 activation was inhibited by the voltage-gated Na(+) channel blocker tetrodotoxin (1 micro m). We also found that application of the ERK pathway inhibitors U0126 (50 micro m) or PD98059 (100 micro m) markedly reduced 4AP-induced epileptiform synchronization, thus abolishing ictal discharges in the CA3 area. The effects induced by U0126 or PD98059 were not associated with changes in the amplitude and latency of the field potentials recorded in the CA3 area following electrical stimuli delivered in the dentate hylus. These data demonstrate that activation of ERK1/2 accompanies the appearance of epileptiform activity induced by 4AP and suggest a cause-effect relationship between the ERK pathway and epileptiform synchronization.  相似文献   

17.
Fertilization triggers initiation of development and establishment of blocks on the egg coat and plasma membrane to prevent fertilization by multiple sperm (polyspermy). The mechanism(s) by which mammalian eggs establish the membrane block to polyspermy is largely unknown. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) appears to be the key regulator of several egg activation events (completion of meiosis, progression to embryonic interphase, recruitment of maternal mRNAs). Since sperm-induced increases in cytosolic Ca(2+) play a role in establishment of the membrane block to polyspermy in mouse eggs, we hypothesized that CaMKII was a Ca(2+)-dependent effector leading to this change in egg membrane function. To test this hypothesis, we modulated CaMKII activity in two ways: activating eggs parthenogenetically by introducing constitutively active CaMKIIalpha (CA-CaMKII) into unfertilized eggs, and inhibiting endogenous CaMKII in fertilized eggs with myristoylated autocamtide 2-related inhibitory peptide (myrAIP). We find that eggs treated with myrAIP establish a less effective membrane block to polyspermy than do control eggs, but that CA-CaMKII is not sufficient for membrane block establishment, despite the fact that CA-CaMKII-activated eggs undergo other egg activation events. This suggests that: (1) CaMKII activity contributes to the membrane block, but this not faithfully mimicked by CA-CaMKII and furthermore, other pathways, in addition to those activated by Ca(2+) and CaMKII, also participate in membrane block establishment; (2) CA-CaMKII has a range of effects as a parthenogenetic trigger of egg activation (high levels of cell cycle resumption, modest levels of cortical granule exocytosis, and no membrane block establishment).  相似文献   

18.
Although mitogen-activated protein kinase (MAPK) is a well-known cell cycle regulator, emerging studies have also implicated its activity in the regulation of intracellular calcium concentration ([Ca2+](i)) and secretion. Those studies raise the hypothesis that MAPK activity during oocyte maturation and early fertilization is required for normal egg Ca2+ oscillations and cortical granule (CG) secretion. We extend the findings of [Lee, B., Vermassen, E., Yoon, S.-Y., Vanderheyden, V., Ito, J., Alfandari, D., De Smedt, H., Parys, J.B., Fissore, R.A., 2006. Phosphorylation of IP(3)R1 and the regulation of [Ca2+](i) responses at fertilization: a role for the MAP kinase pathway. Development 133, 4355-4365] by demonstrating acute effects on Ca2+ oscillation frequency, amplitude, and duration in fertilized mouse eggs matured in vitro with the MAPK inhibitor, U0126. Frequency was increased, whereas amplitude and duration were greatly decreased. These effects were significantly reduced in eggs matured in vivo and fertilized in the presence of the inhibitor. Ionomycin studies indicated that intracellular Ca2+ stores were differentially affected in eggs matured in vitro with U0126. Consistent with these effects on [Ca2+](i) elevation, fertilization-induced CG exocytosis and metaphase II exit were also reduced in in vitro-matured eggs with U0126, but not in those similarly treated after in vivo maturation. These results indicate that MAPK targets Ca2+ regulatory proteins during both maturation and fertilization, as well as provide a new hypothesis for MAPK function, which is to indirectly regulate events of early development by controlling Ca2+ oscillation parameters.  相似文献   

19.
In order to elucidate the role of mitogen-activated protein kinase kinase (MEK-1/2) in 5-lipoxygenase (5-LO) activation we studied the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced 5-LO translocation in human blood neutrophils (PMNs). In non-primed, Ca(2+)-repleted PMNs, fMLP consistently stimulated MEK-1/2 phosphorylation, but induced 5-LO translocation and product formation (430+/-128 pmol; SEM, n=13) only in 13 of 18 PMN preparations from different healthy donors. In fMLP-responsive cells, the MEK-1/2 inhibitor PD098059 (50 microM) attenuated MEK phosphorylation and abolished 5-LO activation at the translocation step. The fMLP-mediated 5-LO product formation was also sensitive to MEK inhibition by U0126 and to p38 inhibition by SB203580. But in contrast to PD098059, U0126 at 10 microM and SB203580 at 20-50 microM impaired 5-LO activity in the cell-free assay setting, suggesting direct actions of higher concentrations of U0126 and SB203580 on 5-LO apart from MEK and p38 inhibition, respectively. These data show that fMLP initiates 5-LO product formation in non-primed, Ca(2+)-repleted human blood PMNs from healthy donors, and that MEK signaling is pivotal, but not sufficient for 5-LO activation in response to the receptor agonist fMLP.  相似文献   

20.
Neuropoietic cytokines such as ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) stimulate the functional expression of T-type Ca(2+) channels in developing sensory neurons. However, the molecular and cellular mechanisms involved in the cytokine-evoked membrane expression of T-type Ca(2+) channels are not fully understood. In this study we investigated the role of LIF in promoting the trafficking of T-type Ca(2+) channels in a heterologous expression system. Our results demonstrate that transfection of HEK-293 cells with the rat green fluorescent protein (GFP)-tagged T-type Ca(2+) channel α(1H)-subunit resulted in the generation of transient Ca(2+) currents. Overnight treatment of α(1H)-GFP-transfected cells with LIF caused a significant increase in the functional expression of T-type Ca(2+) channels as indicated by changes in current density. LIF also evoked a significant increase in membrane fluorescence compared with untreated cells. Disruption of the Golgi apparatus with brefeldin A inhibited the stimulatory effect of LIF, indicating that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Trafficking of α(1H)-GFP was also disrupted by cotransfection of HEK-293 cells with the dominant-negative form of ADP-ribosylation factor (ARF)1 but not ARF6, suggesting that ARF1 regulates the LIF-evoked membrane trafficking of α(1H)-GFP subunits. Trafficking of T-type Ca(2+) channels required transient activation of the JAK and ERK signaling pathways since stimulation of HEK-293 cells with LIF evoked a considerable increase in the phosphorylation of the downstream JAK targets STAT3 and ERK. Pretreatment of HEK-293 cells with the JAK inhibitor P6 or the ERK inhibitor U0126 blocked ERK phosphorylation. Both P6 and U0126 also inhibited the stimulatory effect of LIF on T-type Ca(2+) channel expression. These findings demonstrate that cytokines like LIF promote the trafficking of T-type Ca(2+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号