首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Polynucleotide phosphorylase was partially purified from the inner membrane of rat liver mitochondria. 2. The partially purified particulate enzyme catalyses phosphorolysis of poly(A), poly(C), poly(U) and RNA to nucleoside diphosphates. 3. It is devoid of nucleoside diphosphate-polymerization activity. 4. Variable amounts of ADP/P(i)-exchange activity are associated with the polynucleotide phosphorylase and are probably due to a different enzyme. 5. ADP is the preferred substrate for exchange, and little or no reaction occurs with other nucleoside diphosphates, but ATP/P(i)-exchange takes place at one-third the rate observed with ADP. 6. The partially purified enzyme is free from the phosphatases found in the crude mitochondrial inner membrane, but is associated with an endonuclease activity and some adenylate kinase activity; no cytidylate kinase activity analogous to the latter was detectable.  相似文献   

2.
In crude extracts of T2L phage-infected Escherichia coli cells an enzyme activity was found that produced poly(A) from ATP as substrate. Purification of the extract led to the isolation of two enzymes, a polynucleotide phosphorylase and an ATPase. The polynucleotide phosphorylase possessed the same properties as the well-known enzyme from uninfected cells and its molecular weight was about 265 000. The ATPase was purified to over 90% purity; its molecular weight was estimated to be about 165 000 with three subunits of 55 000. The characterization of this enzyme showed that it was different from any ATPase known so far. Mg2+ cannot be replaced by Ca2+, as it can from the membrane-bound ATPases. The only product yielded by the enzyme was ADP; it was very specific for ATP, other ribonucleotide triphosphates being practically unaffected. The rate of ATP splitting was found to be very high, the turnover number being 2.51 X 10(4) min-1 at 37 degrees C. Even at 0 degree C the enzyme was still active. The optimal assay conditions for ATPase turned out to be very similar to those of polynucleotide phosphorylase. Thus the combination of the two enzymes very efficiently produced poly(A) from ATP. In this combination the polynucleotide phosphorylase was the rate-limiting enzyme, since its turnover number was about 40 times lower than that of the ATPase. The evaluation of a variety of properties of the poly(A)-synthesizing constituent found in the crude extracts led us to conclude that this activity arises from the combined action of ATPase and polynucleotide phosphorylase, and is not due to a poly(A) polymerase.  相似文献   

3.
A Guissani 《Biochimie》1978,60(8):755-765
This report describes structural studies on purified polynucleotide phosphorylase from C. perfringens. A method is described for the purification of the enzyme which yields a product equivalent in activity to the native polynucleotide phosphorylase from E. coli. These studies revealed a molecular heterogeneity arising from successive stages of proteolysis, to which this enzyme is especially sensitive; unusally, the enzyme is obtained as a mixture of variable proportions of the native and proteolysed forms. We found in all cases a trimeric basic structure composed of the native (alpha) or proteolysed (lapha) or proteolysed (alpha', alpha") catalytic sub-units, However, the enzyme is rather easily dissociated into its sub-units, a phenomenon which seems to accompany proteolysis (Table). Under the action of either endogenous proteases or trypsin, two enzymatic forms are obtained: their quaternary structures seem analogous, but they differ in their catalytic properties from each other and from the initial enzyme. With some care at each step of purification, the polynucleotide phosphorylase of E. coli can be obtained exclusively in its native form. The greater susceptibility to proteolysis of the enzyme from C. perfrigens and the relationship between such degradation and quaternary structure seem to be at the origin of the peculiar behavior of this polynucleotide phosphorylase.  相似文献   

4.
1. Treatment of Micrococcus lysodeikticus polynucleotide phosphorylase (nucleoside diphosphate-polynucleotide nucleotidyltransferase) with trypsin causes a preferential loss of its cytidine diphosphate and uridine diphosphate polymerization activities. 2. The phosphorolytic activity of the enzyme towards polycytidylic acid is unaffected in conditions in which the cytidine diphosphate-polymerization activity without added primer is virtually abolished. 3. The treated enzyme retains its altered pattern of activities when purified fivefold by gel filtration. 4. The effect on the cytidine diphosphate-polymerization activity is due, in part, to a large increase in primer requirement as a result of proteolysis, and is qualitatively independent of the state of purity of the polynucleotide phosphorylase. 5. The enzyme is protected from trypsin degradation by nucleic acids, polynucleotides and nucleoside disphosphates. 6. A similar, but less marked differential effect, is caused by alpha-chymotrypsin.  相似文献   

5.
1. Livers from gsd/gsd rats, which do not express phosphorylase kinase activity, also contain much less particulate type-1 protein phosphatases. In comparison with normal Wistar rats, the glycogen/microsomal fraction contained 75% less glycogen-synthase phosphatase and 60% less phosphorylase phosphatase activity. This was largely due to a lower amount of the type-1 catalytic subunit in the particulate fraction. In the cytosol, the synthase phosphatase activity was also 50% lower, but the phosphorylase phosphatase activity was equal. 2. Both Wistar rats and gsd/gsd rats responded to an intravenous injection of insulin plus glucose with an acute increase (by 30-40%) in the phosphorylase phosphatase activity in the liver cytosol. In contrast, administration of glucagon or vasopressin provoked a rapid fall (by about 25%) in the cytosolic phosphorylase phosphatase activity in Wistar rats, but no change occurred in gsd/gsd rats. 3. Phosphorylase kinase was partially purified from liver and subsequently activated. Addition of a physiological amount of the activated enzyme to a liver cytosol from Wistar rats decreased the V of the phosphorylase phosphatase reaction by half, whereas the non-activated kinase had no effect. The kinase preparations did not change the activity of glycogen-synthase phosphatase, which does not respond to glucagon or vasopressin. Furthermore, the phosphorylase phosphatase activity was not affected by addition of physiological concentrations of homogeneous phosphorylase kinase from skeletal muscle (activated or non-activated). 4. It appears therefore that phosphorylase kinase plays an essential role in the transduction of the effect of glucagon and vasopressin to phosphorylase phosphatase. However, this inhibitory effect either is specific for the hepatic phosphorylase kinase, or is mediated by an unidentified protein that is a specific substrate of phosphorylase kinase.  相似文献   

6.
Native Escherichia coli polynucleotide phosphorylase can be retained on blue-dextran--Sepharose. The bound enzyme cannot be displaced by its mononucleotide substrates such as ADP, UDP, CDP, GDP and IDP, but it is easily eluted by its polymeric substrates. Under identical conditions, lactate dehydrogenase, bound on blue-dextran--Sepharose, is not eluted by poly(I) but can be specifically displaced by NADH. On the other hand, the trypsinized polynucleotide phosphorylase, known to be an active enzyme which has lost its polynucleotide site, does not bind to the affinity column. The native polynucleotide phosphorylase can also be tightly bound to poly(U)--agarose and displaced from it only by high salt concentration. The trypsinized enzyme is not bound at all on poly(I)--AGAROSe. Moreover, the native enzyme linked on blue-dextran--Sepharose, remains active indicating a free access of nucleoside diphosphates to the active center. These results taken together show that the dye ligand is not inserted onto the mononucleotide binding site and suggest rather that it binds to the polynucleotide binding region. The implications of this study and the application of blue-dextran--Sepharose affinity chromatography to other proteins having affinity for nucleic acids are discussed.  相似文献   

7.
Three polynucleotide phosphorylase mutations, isolated in heavily mutagenized Escherichia coli strains Q7, Q13, and Q27, were characterized after their transfer by P1 transduction to nearly isogenic strains which lack ribonuclease I. Each strain has a different altered form of polynucleotide phosphorylase. One enzyme exhibited sharply reduced activity under all conditions tested. A second had reduced activity which was stimulated by Mn(++). The third enzyme was thermolabile and could be >95% inactivated in vivo at 44 C and pH 6 if the cells were prevented from growing; during growth under these and other conditions, the full enzyme level was maintained. The strains showed no differences from the wild type in their growth rates, their adjustments to changes in media and temperature, or their recoveries from starvation.  相似文献   

8.
1. An improved method for the purification of Clostridium perfringens polynucleotide phosphorylase (nucleoside diphosphate-polyribonucleotide nucleotidyltransferase, EC 2.7.7.8) is described. The product was stable and was highly stimulated by polylysine or polyornithine. 2. It migrated as a single enzyme during sucrose-density-gradient centrifugation, and no separation of polymerization and phosphorolytic activities was observed. 3. Trypsin digestion caused a rapid, preferential loss of the polylysine- or polyornithine-stimulated activity, which was prevented by low concentrations of polyornithine. 4. The protection by polyornithine was not specific. 5. It is concluded that charge effects on the clostridial polynucleotide phosphorylase itself are primarily responsible for the stimulation of this enzyme by polylysine or polyornithine.  相似文献   

9.
Mutants having low levels of polynucleotide phosphorylase activity grow poorly at 45 C. All revertants isolated for their ability to grow better at that temperature also regained higher levels of polynucleotide phosphorylase and the ability to be induced for tryptophanase. Thus, a physiological role is implied for the enzyme polynculeotide phosphorylase.  相似文献   

10.
Upon fractionation of a post mitochondrial supernatant from rat liver, phosphorylase kinase activity was largely recovered in the cytosol and the smooth endoplasmic reticulum (SER) fraction. The presence of phosphorylase kinase in SER vesicles was not due to an interaction of the enzyme with glycogen particles, since previous elimination of SER glycogen either by 48 h animal starvation or by treatment of the membrane fraction with -amylase did not significantly alter phosphorylase kinase activity content. Washing of the initial pellet of SER fraction (crude SER) by dilution and recentrifugation, released in the supernatant an amount of phosphorylase kinase activity, which is dependent on: i) the degree of dilution, ii) the number of washes, iii) the ionic strength of the washing solution and iii) the presence or absence of Ca2+. Crude SER-associated phosphorylase kinase was marginally affected by increased concentrations of antibody against rabbit skeletal muscle holoenzyme which nevertheless drastically inhibited cytosolic enzyme activity, while it showed a higher resistance to partial proteolysis and a different Western blotting profile with anti-phosphorylase kinase when compared with the soluble kinase. A small but significant fraction of SER phosphorylase kinase was strongly associated with the microsomal fraction being partly extractable only in presence of detergents. This membrane-bound enzyme form exhibited an alkaline pH optimum, in contrast to the neutral pH optima of both soluble and weakly associated phosphorylase kinase.Abbreviations SER smooth endoplasmic reticulum - RER rough endoplasmic reticulum - PMS post mitochondrial supernatant - MES 2-(N-morpholino) ethane sulfonic acid - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

11.
It is already known that modification of E. coli polynucleotide phosphorylase by endogenous proteolysis induces drastic changes in both phosphorolysis and polymerisation reactions. The structural parameters of the proteolysed polynucleotide phosphorylase are described. The phosphorolysis of polynucleotide, which is quite progressive for the native enzyme, is shown to be only partially progressive for the degraded enzyme, owing to the loss of polymer attachment sites.  相似文献   

12.
Nonactivated phosphorylase kinase from rabbit skeletal muscle is inactivated by treatment with phenylglyoxal. Under mild reaction conditions, a derivative that retains 10-15% of the pH 8.2 catalytic activity is obtained. The kinetics of inactivation profile, differential effects of modification on pH 6.8 and 8.2 catalytic activities, and the insensitiveness of the modified enzyme to activation by ADP reveal that the 10-15% of catalytic activity remaining is very likely due to intrinsic catalytic activity of the derivative rather than to the presence of unmodified enzyme molecules. The kinetic results also suggest that the inactivation is correlatable with the reaction of one molecule of the reagent with the enzyme without any prior binding of phenylglyoxal. The phenylglyoxal modification reduces the autophosphorylation rate of the kinase. Autophosphorylated phosphorylase kinase is inactivated by phenylglyoxal at a much slower rate than the inactivation of nonactivated kinase. Thus, phenylglyoxal modification influences the phosphorylation and vice versa. The modified enzyme can be reactivated by treatment with trypsin or by dissociation using chatropic salts. The activity of the phenylglyoxal-modified enzyme after trypsin digestion or dissociation with LiBr reaches the same level as that of the native enzyme digested with trypsin or treated with LiBr under identical conditions. The results suggest that the effect of modification is overcome by dissociation of the subunits of phosphorylase kinase and that the catalytic site is not modified under conditions when 85% of the pH 8.2 catalytic activity is lost. Among various nucleotides and metal ions tested, only ADP, with or without Mg2+, afforded effective protection against inactivation with phenylglyoxal. At pH 6.8, 1 mM ADP afforded complete protection against inactivation. Experiments with 14C-labeled phenylglyoxal revealed that ADP seemingly protects one residue from modification. This result is in agreement with the kinetic result that the inactivation seemingly is due to reaction of one molecule of the reagent with the enzyme. The results confirm the existence of a high-affinity ADP binding site on nonactivated phosphorylase kinase and suggest the involvement of a functional arginyl residue at or near the ADP binding site in the regulation of of pH 8.2 catalytic activity of the enzyme.  相似文献   

13.
Purification and properties of phosphorylase from baker's yeast   总被引:2,自引:0,他引:2  
A rapid, reliable method for purification of phosphorylase, yielding 200-400 mg pure phosphorylase from 8 kg of pressed baker's yeast, is described. The enzyme is free of phosphorylase kinase activity but contains traces of phosphorylase phosphatase activity. Phosphorylase constitutes 0.5-0.8% of soluble protein in various strains of yeast assayed immunochemically. The subunit molecular weight (Mr) of yeast phosphorylase is around 100,000. The enzyme is composed of two subunits in various ratios, differing slightly in molecular weight and N-terminal sequence. Both are active. Only the enzyme species containing the larger subunit can form tetramers and higher oligomers. The activated enzyme is dimeric. Correlated with specific activity (1 to 110 U/mg), phosphorylase contained between less than 0.1 to 0.74 covalently bound phosphate per subunit. Inactive forms of phosphorylase could be activated by phosphorylase kinase and [gamma-32P]ATP with concomitant phosphorylation of a single threonine residue in the aminoterminal region of the large subunit. The small subunit was not labeled. The incorporated phosphate could be removed by yeast phosphorylase phosphatase, resulting in loss of activity of phosphorylase, which could be restored by ATP and phosphorylase kinase.  相似文献   

14.
3'-Phosphatase activity in T4 polynucleotide kinase.   总被引:26,自引:0,他引:26  
V Cameron  O C Uhlenbeck 《Biochemistry》1977,16(23):5120-5126
The purification of T4 polynucleotide kinase results in the copurification of an activity which will specifically remove the 3'-terminal phosphate from a variety of deoxyribonucleotides and ribonucleotides in the absence of ATP. This phosphatase activity requires magnesium, has a pH optiumum of 6.0, and is more active with deoxyribonucleotides than ribonucleotides. T4 polynucleotide kinase and the 3'-phosphatase activity copurify by gradient elution column chromatography on DEAE-cellulose, phosphocellulose, and hydroxylapatite. The two activities are included in and comigrate on Sephadex G-200. Polyacrylamide gel electrophoresis at PH 9.2 results in conigration of the two activities together with the major protein band. The two activities respond in parallel to heat inactivation at 35 degrees C and ATP, a substrate for the kinase only, protects both activities from heat inactivation. It is therefore suggested that the two activities are functions of the same protein molecule.  相似文献   

15.
Vibrio costicola polynucleotide phosphorylase (polyribonucleotide: orthophosphate nucleotidyltransferase, EC 2.7.7.8) has been purified to electrophoretic homogeneity. It has an approximate molecular weight of 220 000 and consists of identical subunits with an approximate molecular weight of 72 000. The enzyme appears to be a fairly typical polynucleotide phosphorylase with respect to its pH optima, substrate specificity and requirement for a divalent cation cofactor. However, the effect of salt concentration on its physiologically important phosphorolysis activity suggests that it is a moderately halophilic enzyme, able to function at the intracellular ionic strength of the bacterium. In addition, its ADP polymerization activity is remarkably stimulated by polylysine.  相似文献   

16.
M Morange  H Buc 《Biochimie》1979,61(5-6):633-643
Glycogen phosphorylase b is converted to glycogen phosphorylase a, the covalently activated form of the enzyme, by phosphorylase kinase. Glc-6-P, which is an allosteric inhibitor of phosphorylase b, and glycogen, which is a substrate of this enzyme, are already known to have respectively an inhibiting and activating effect upon the rate of conversion from phosphorylase b to phosphorylase a by phosphorylase kinase. In the former case, this effect is due to the binding of glucose-6-phosphate to glycogen phosphorylase b. In order to investigate whether or not the rate of conversion of glycogen phosphorylase b to phosphorylase a depends on the conformational state of the b substrate, we have tested the action of the most specific effectors of glycogen phosphorylase b activity upon the rate of conversion from phosphorylase b to phosphorylase a at 0 degrees C and 22 degrees C : AMP and other strong activators, IMP and weak activators, Glc-6-P, glycogen. Glc-1-P and phosphate. AMP and strong activators have a very important inhibitory effect at low temperature, but not at room temperature, whereas the weak activators have always a very weak, if even existing, inhibitory effect at both temperatures. We confirmed the very strong inhibiting effect of Glc-6-P at both temperatures, and the strong activating effect of glycogen. We have shown that phosphate has a very strong inhibitory effect, whereas Glc-1-P has an activating effect only at room temperature and at non-physiological concentrations. The concomitant effects of substrates and nucleotides have also been studied. The observed effects of all these ligands may be either direct ones on phosphorylase kinase, or indirect ones, the ligand modifying the conformation of phosphorylase b and its interaction with phosphorylase kinase. Since we have no control experiments with a peptidic fragment of phosphorylase b, the interpretation of our results remains putative. However, the differential effects observed with different nucleotides are in agreement with the simple conformational scheme proposed earlier. Therefore, it is suggested that phosphorylase kinase recognizes differently the different conformations of glycogen phosphorylase b. In agreement with such an explanation, it is shown that the inhibiting effect of AMP is mediated by a slow isomerisation which has been previously ascribed to a quaternary conformational change of glycogen phosphorylase b. The results presented here (in particular, the important effect of glycogen and phosphate) are also discussed in correlation with the physiological role of the different ligands as regulatory signals in the in vivo situation where phosphorylase is inserted into the glycogen particle.  相似文献   

17.
Polynucleotide phosphorylase from Bacillus stearothermophilus has been purified to homogeneity. Polyacrylamide gel electrophoresis run under denaturing conditions indicates that the enzyme is a tetramer with subunits of apparent molecular weight 51,000 daltons. A partial purification of polynucleotide phosphorylase from Thermus aquaticus has also been effected. The two enzymes show similar catalytic properties, which differ little from those of mesophilic polynucleotide phosphorylases. The use of thermostable polynucleotide phosphorylases for in vitro nucleic acid synthesis is discussed.  相似文献   

18.
A phosphoprotein phosphatase which is active against chemically phosphorylated protamine has been purified about 500-fold from bovine adrenal cortex. The enzyme has a pH optimum between 7.5 and 8.0, and has an apparent Km for phosphoprotamine of about 50 muM. The hydrolysis of phosphoprotamine is stimulated by salt, and by Mn2+. Hydrolysis of phosphoprotamine is inhibited by ATP, ADP, AMP, and Pi, but is not affected by AMP or cyclic GMP. The purified phosphoprotein phosphatase preparation also dephosphorylates p-nitrophenyl phosphate and phosphohistone, and catalyzes the inactivation of liver phosphorylase, the inactivation of muscle phosphorylase a (and its conversion to phosphorylase b), and the inactivation of muscle phosphorylase b kinase. Phosphatase activities against phosphoprotamine and muscle phosphorylase a copurify over the last three stages of purification. Phosphoprotamine inhibits phosphorylase phosphatase activity, and muscle phosphorylase a inhibits the dephosphorylation of phosphoprotamine. These results suggest that one enzyme possesses both phosphoprotamine phosphatase and phosphorylase phosphatase activities. The stimulation of phosphorylase phosphatase activity, but not of phosphoprotamine phosphatase activity, by caffeine and by glucose, suggests that the different activities of this phosphoprotein phosphatase may be regulated separately.  相似文献   

19.
When phosphorylase kinase from rabbit skeletal muscle was activated by phosphorylation and then cross-linked with 1,5-difluoro-2,4-dinitrobenzene at pH 6.8, dimers of beta subunits were formed that were not observed during cross-linking of nonphosphorylated enzyme under the same conditions. The ability to form these dimers was due to phosphorylation of the beta subunit because when enzyme phosphorylated in the alpha and beta subunits was incubated with a protein phosphatase relatively specific for the beta subunit (Ganapathi, M.K., Silberman, S.R., Paris, H., and Lee, E.Y.C. (1981) J. Biol. Chem. 256, 3213-3217), the ability to form the cross-linked beta dimers was lost. Significant amounts of two complexes also judged to be dimers of beta subunits were observed when nonphosphorylated phosphorylase kinase was cross-linked after preincubation with Ca2+ plus Mg2+ ions, after proteolysis by chymotrypsin, or when it was cross-linked at pH 8.2, three conditions known to stimulate the activity of the nonphosphorylated enzyme. From these results, we conclude that 1,5-difluoro-2,4-dinitrobenzene can serve as a structural probe for activated states of phosphorylase kinase. The activation is associated with a conformational change in which two beta subunits either move closer together or have a reactive group on one, or both, of them unmasked. Our results suggest that the diverse mechanisms listed above for stimulating phosphorylase kinase activity cause a common conformational change to occur.  相似文献   

20.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号