首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The c-Jun N-terminal kinases (JNKs) are encoded by three genes that yield 10 isoforms through alternative mRNA splicing. The roles of each JNK isoform in the many putative biological responses where the JNK pathway is activated are still unclear. To examine the cellular responses mediated by different JNK isoforms, gain-of-function JNK1 polypeptides were generated by fusing the upstream mitogen-activated protein kinase kinase, MKK7, with p46JNK1alpha or p46JNK1beta. The MKK7-JNK fusion proteins, which exhibited constitutive activity in 293T cells, were stably expressed in Swiss 3T3 fibroblasts using retrovirus-mediated gene transfer. Swiss 3T3 cells expressing either of the MKK7-JNK polypeptides were equally sensitized to induction of cell death following serum withdrawal. To search for other cellular responses that may be selectively regulated by the JNK1 isoforms, the gene expression profiles of Swiss 3T3 cells expressing MKK7-JNK1alpha or MKK7-JNK1beta were compared with empty vector-transfected control cells. Affymetrix Genechips identified 46 genes for which expression was increased in MKK7-JNK-expressing cells relative to vector control cells. Twenty genes including those for c-Jun, MKP-7, interluekin-1 receptor family member ST2L/ST2, and c-Jun-binding protein were induced similarly by MKK7-JNK1alpha and MKK7-JNK1beta proteins, whereas 13 genes were selectively increased by MKK7-JNK1alpha and 13 genes were selectively increased by MKK7-JNK1beta. The set of genes selectively induced by MKK7-JNK1beta included a number of known interferon-stimulated genes (ISG12, ISG15, IGTP, and GTPI). Consistent with these gene expression changes, Swiss 3T3 cells expressing MKK7-JNK1beta exhibited increased resistance to vesicular stomatitis virus-induced cell death. These findings reveal evidence for JNK isoform-selective gene regulation and support a role for distinct JNK isoforms in specific cellular responses.  相似文献   

3.
Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of NF-κB, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit TNF-α-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and TNF-α.  相似文献   

4.
Inflammatory bone diseases are characterized by the presence of pro-inflammatory cytokines that regulate bone turnover. Osteoprotegerin (OPG) is a soluble osteoblast-derived protein that influences bone resorption by inhibiting osteoclast differentiation and activation. In the present study, we demonstrate that interleukin-1beta and tumor necrosis factor alpha induce OPG mRNA production and OPG secretion by osteoblast-like MG-63 cells. Maximum induction of OPG secretion by either cytokine requires activation of the p38 mitogen activated protein kinase (MAPK) pathway but neither the p42/p44 (ERK) nor the c-Jun N-terminal MAPK pathways. Induction of OPG mRNA by either cytokine is also p38 MAPK dependent. Taken together, these data indicate that cytokine-induced OPG gene expression and protein secretion are differentially regulated by specific MAP kinase signal transduction pathways.  相似文献   

5.
目的探讨JNK信号通路对蜂胶抑制K562细胞增殖过程的调控作用。方法体外培养K562细胞,用不同浓度蜂胶、c—Jun氨基末端激酶(c—JanN—terminalkinase,JNK)特异性抑制剂SP600125对白血病K562细胞进行处理,用MTT法检测细胞增殖抑制率,流式细胞术(FCM)检测细胞凋亡率,Western印迹检测JNK下游分子c—Jun以及磷酸化c—Jan(p-c-Jun)的变化。结果蜂胶作用K562细胞后,增殖抑制率、凋亡率显著升高,具有时间和剂量依赖性,并伴随p-c-Jun蛋白水平上调;加入SP600125能下调p-c-Jun的水平,显著提高蜂胶对K562细胞的增殖抑制率和凋亡率。结论JNK信号通路参与了蜂胶抑制K562细胞增殖过程的调控。抑制JNK活性可增强蜂胶对K562细胞的增殖抑制、凋亡诱导作用。  相似文献   

6.
Phenolic compounds including tannins and flavonoids have been implicated in suppression of osteoclast differentiation/function and prevention of bone diseases. However, the effects of hydrolysable tannins on bone metabolism remain to be elucidated. In this study, we found that furosin, a hydrolysable tannin, markedly decreased the differentiation of both murine bone marrow mononuclear cells and Raw264.7 cells into osteoclasts, as revealed by the reduced number of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and decreased TRAP activity. Furosin appears to target at the early stage of osteoclastic differentiation while having no cytotoxic effect on osteoclast precursors. Analysis of the inhibitory mechanisms of furosin revealed that it inhibited the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1). Furthermore, furosin reduced resorption pit formation in osteoclasts, which was accompanied by disruption of the actin rings. Taken together, these results demonstrate that naturally occurring furosin has an inhibitory activity on both osteoclast differentiation and function through mechanisms involving inhibition of the RANKL-induced p38MAPK and JNK/AP-1 activation as well as actin ring formation.  相似文献   

7.
Focusing on the final step of osteoclastogenesis, we studied cell fusion from tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells into multinuclear cells. TRAP-positive mononuclear cells before generation of multinuclear cells by cell fusion were differentiated from RAW264.7 cells by treatment with receptor activator of nuclear factor kappa B ligand (RANKL), and then the cells were treated with lipopolysaccharide (LPS), followed by culturing for further 12 h. LPS-induced cell fusion even in the absence of RANKL. Similarly, tumor necrosis factor (TNF)-alpha and peptidoglycan (PGN) induced cell fusion, but M-CSF did not. The cell fusion induced by RANKL, TNF-alpha, and LPS was specifically blocked by osteoprotegerin (OPG), anti-TNF-alpha antibody, and polymyxin B, respectively. LPS- and PGN-induced cell fusion was partly inhibited by anti-TNF-alpha antibody but not by OPG. When TRAP-positive mononuclear cells fused to yield multinuclear cells, phosphorylation of Akt, Src, extracellular signal-regulated kinase (ERK), p38MAPK (p38), and c-Jun NH2-terminal kinase (JNK) was observed. The specific chemical inhibitors LY294002 (PI3K), PP2 (Src), U0126 (MAPK-ERK kinase (MEK)/ERK), and SP600125 (JNK) effectively suppressed cell fusion, although SB203580 (p38) did not. mRNA of nuclear factor of activated T-cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) during the cell fusion was quantified, however, there was no obvious difference among the TRAP-positive mononuclear cells treated with or without M-CSF, RANKL, TNF-alpha, LPS, or PGN. Collectively, RANKL, TNF-alpha, LPS, and PGN induced cell fusion of osteoclasts through their own receptors. Subsequent activation of signaling pathways involving PI3K, Src, ERK, and JNK molecules was required for the cell fusion. Although DC-STAMP is considered to be a requisite for cell fusion of osteoclasts, cell fusion-inducing factors other than DC-STAMP might be necessary for the cell fusion.  相似文献   

8.
9.
10.
Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor regulates bone mass by inhibiting osteoclastic bone resorption. mTOR, which is the mammalian target of rapamycin, is a kinase and central regulator of cell growth, proliferation, and survival. By using Rapamycin, we studied whether mTOR pathway is associated with OPG protein production in the mouse bone marrow-derived stromal cell line ST2. Rapamycin markedly increased the level of soluble OPG in ST2 cells. This antibiotic treatment resulted in the suppression of phosphorylation of mTOR. Rapamycin had no effects on the proliferation, differentiation, or apoptosis of the cells. Treatment with bone morphogenetic protein-4, which can induce OPG protein in ST2 cells, also resulted in a decrease in the density of the phospho-mTOR-band, suggesting that the suppression of the phospho-mTOR pathway is necessary for OPG production in ST2 cells. Thus, suitable suppression of mTOR phosphorylation is a necessary requirement for OPG production in bone marrow stromal cells.  相似文献   

11.
The receptor activator of NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), are the important proteins involved in osteoclastogenesis. In this study, we investigated the expressions of RANKL and OPG in cultured human periodontal ligament cells derived from deciduous teeth (DPDL cells) and their roles in osteoclastogenesis. Northern blotting revealed that the OPG mRNA was down-regulated by application of 10(-8) M 1 alpha, 25(OH)2 vitamin D3 [1,25-(OH)2D3] and 10(-7) M dexamethasone (Dex). In contrast, RANKL mRNA was up-regulated by the same treatment. Western blotting demonstrated a decrease in OPG following application of 1, 25-(OH)2D3 and Dex. Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs) were induced when DPDL cells were co-cultured with mouse bone marrow cells in the presence of 1,25-(OH)2D3 and Dex. TRAP-positive MNCs increased significantly when the DPDL cells were co-cultured with bone marrow cells in the presence of anti-human OPG antibody together with 1, 25-(OH)2D3 and Dex. These results indicate that PDL cells derived from deciduous teeth synthesize both RANKL and OPG and could regulate the differentiation of osteoclasts.  相似文献   

12.
13.
14.
15.
16.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF-kappaB ligand (RANKL). We previously reported that OPG deficiency elevated the circulating level of RANKL in mice. Using OPG(-/-) mice, we investigated whether OPG is involved in the shedding of RANKL by cells expressing RANKL. Osteoblasts and activated T cells in culture released a large amount of RANKL in the absence of OPG. OPG or a soluble form of receptor activator of NF-kappaB (the receptor of RANKL) suppressed the release of RANKL from those cells. OPG- and T cell-double-deficient mice showed an elevated serum RANKL level equivalent to that of OPG(-/-) mice, indicating that circulating RANKL is mainly derived from bone. The serum level of RANKL in OPG(-/-) mice was increased by ovariectomy or administration of 1alpha,25-dihydroxyvitamin D(3). Expression of RANKL mRNA in bone, but not thymus or spleen, was increased in wild-type and OPG(-/-) mice by 1alpha,25-dihydroxyvitamin D(3). These results suggest that OPG suppresses the shedding of RANKL from osteoblasts and that the serum RANKL in OPG(-/-) mice exactly reflects the state of bone resorption.  相似文献   

17.
Anti-diabetic drug metformin has been shown to enhance osteoblasts differentiation and inhibit osteoclast differentiation in vitro and prevent bone loss in ovariectomized (OVX) rats. But the mechanisms through which metformin regulates osteoclastogensis are not known. Osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) are cytokines predominantly secreted by osteoblasts and play critical roles in the differentiation and function of osteoclasts. In this study, we demonstrated that metformin dose-dependently stimulated OPG and reduced RANKL mRNA and protein expression in mouse calvarial osteoblasts and osteoblastic cell line MC3T3-E1. Inhibition of AMP-activated protein kinase (AMPK) and CaM kinase kinase (CaMKK), two targets of metformin, suppressed endogenous and metformin-induced OPG secretion in osteoblasts. Moreover, supernatant of osteoblasts treated with metformin reduced formation of tartrate resistant acid phosphatase (TRAP)-positive multi-nucleated cells in Raw264.7 cells. Most importantly, metformin significantly increased total body bone mineral density, prevented bone loss and decreased TRAP-positive cells in OVX rats proximal tibiae, accompanied with an increase of OPG and decrease of RANKL expression. These in vivo and in vitro studies suggest that metformin reduces RANKL and stimulates OPG expression in osteoblasts, further inhibits osteoclast differentiation and prevents bone loss in OVX rats.  相似文献   

18.
The OPG/RANKL/RANK cytokine system is essential for osteoclast biology. Various studies suggest that human metabolic bone diseases are related to alterations of this system. Here we summarize OPG/RANKL/RANK abnormalities in different forms of osteoporoses and hyperparathyroidism. Skeletal estrogen agonists (including 17beta-estradiol, raloxifene, and genistein) induce osteoblastic OPG production through estrogen receptor-alpha activation in vitro, while immune cells appear to over-express RANKL in estrogen deficiency in vivo. Of note, OPG administration can prevent bone loss associated with estrogen deficiency as observed in both animal models and a small clinical study. Glucocorticoids and immunosuppressants concurrently up-regulate RANKL and suppress OPG in osteoblastic cells in vitro, and glucocorticoids are among the most powerful drugs to suppress OPG serum levels in vivo. As for mechanisms of immobilization-induced bone loss, it appears that mechanical strain inhibits RANKL production through the ERK 1/2 MAP kinase pathway and up-regulates OPG production in vitro. Hence, lack of mechanical strainduring immobilization may favor an enhanced RANKL-to-OPG ratio leading to increased bone loss. As for hyperparathyroidism, chronic PTH exposure concurrently enhances RANKL production and suppresses OPG secretion through activation of osteoblastic protein kinase A in vitro which would favour increased osteoclastic activity. In sum, the capacity for OPG to antagonize the increases in bone loss seen in many rodent models of metabolic bone disease implicates RANKL/OPG imbalances as the likely etiology and supports the potential role for a RANKL antagonist as a therapeutic intervention in these settings.  相似文献   

19.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号