首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutational analysis of chilling tolerance in plants   总被引:1,自引:0,他引:1  
A mutational approach was taken to identify genes required for low-temperature growth of the chilling-tolerant plant Arabidopsis thaliana. The screen identified mutants that were specifically compromised in their ability to grow at 5°C but were indistinguishable from wild type when grown at 22°C. The populations screened were mutated either by ethyl methanesulphonate or by T-DNA insertion. In both cases symptoms at 5°C included chlorosis, reduced growth, necrosis and death. This diversity of phenotypes demonstrates roles for chilling-tolerance responses in such diverse processes as organdie biogenesis, cell metabolism and cell and organ development. Co-segregation analysis on the first five mutants isolated from the T-DNA lines indicated that in three of them, pfc1, pfc2 and sop1, the chilling phenotype is the result of T-DNA insertion in a gene required for chilling tolerance rather than the creation of a temperature-conditional mutation in an essential housekeeping gene. This identification of T-DNA tagged alleles will facilitate cloning of the PFC1, PFC2 and SOP1 loci and allow for the biochemical and molecular genetic characterization of these chilling-tolerance genes and the proteins that they encode.  相似文献   

2.
Variation in the steady state (FT) to fluorescence peak (FP) ratio of Nicotiana tabacum L. cv. Xanthi-nc leaves in relation to their position on the plant were correlated with the survival in vitro of protoplasts isolated. The FT/FP ratio detected variation in the protoplast survival potential in individual plants in a batch and between batches of donor plants. Deliberately waterlogged and droughted plants had increased FT/FP values and decreased protoplast survival potential.
The use of slow-phase chlorophyll fluorescence characteristics as a predictive parameter of protoplast survival potential is discussed and compared with the use of stress ethylene and stress ethane measurements for the same purpose.  相似文献   

3.
Seven plant species were exposed in open-top chambers to four levels of ozone (O3) during two growing seasons and screened for treatment effects on the fast chlorophylla(Chl) fluorescence transient kinetics of dark-adapted leaves, and on the fluorescence signals obtained from the same leaves in illuminated steady-state. The aim was to identify the nature of O3 effects on PSII, and to determine inter-specific differences. In dark-adapted leaves, O3 caused a reduction in variable fluorescence (FV : F0), indicating an overall reduction in the efficiency of primary photochemistry. A large increase in excitation energy dissipation per active reaction centre (DI0/RC) and a smaller increase in the trapping rate of excitons (TR0/RC), showed that a fraction of the reaction centres was inactivated while the rest sustained full functionality. The magnitude of the effect increased in the order ofBromus erectusCentaurea jacea Trisetum flavescens Rumex obtusifolius Plantago lanceolataTrifolium pratense Knautia arvensis. The inter-specific variability in PSII responses could not be explained solely by specific differences in modelled O3 uptake by the leaves. Visible leaf injury was not related to changes in fluorescence emission. In illuminated steady-state, O3 sensitivity was most expressed in the change in quantum yield of photosynthetic electron transport (ΦPSII). The ranking of species differed from the ranking obtained in dark-adapted leaves. These results suggest that the mechanistic basis for O3 effects on PSII is similar in all species, but that inter-specific differences exist in the magnitude of change which cannot be explained solely by different O3 uptake rates. The observed changes in fluorescence signals are not O3-specific.  相似文献   

4.
5.
The excitation energy of pigment molecules in photosynthetic antennae systems is utilised by photochemistry, partly it is thermally dissipated, and partly it is emitted as fluorescence. Changes in the quantum yield of chlorophyll (Chl) fluorescence reflect the changes in quantum yield of photochemical reaction and thermal dissipation of the excitation energy. Decrease of the Chl fluorescence quantum yield is called the Chl fluorescence quenching. The decrease of the quantum yield that is accompanied by photochemical reactions has been termed the photochemical quenching, and the decrease accompanied by thermal dissipation of the excitation energy is called the non-photochemical quenching. This review deals with mechanisms of the non-photochemical quenching.  相似文献   

6.
This study compared spontaneous baroreflex sensitivity (BRS) estimates obtained from an identical set of data by 11 European centers using different methods and procedures. Noninvasive blood pressure (BP) and ECG recordings were obtained in 21 subjects, including 2 subjects with established baroreflex failure. Twenty-one estimates of BRS were obtained by methods including the two main techniques of BRS estimates, i.e., the spectral analysis (11 procedures) and the sequence method (7 procedures) but also one trigonometric regressive spectral analysis method (TRS), one exogenous model with autoregressive input method (X-AR), and one Z method. With subjects in a supine position, BRS estimates obtained with calculations of alpha-coefficient or gain of the transfer function in both the low-frequency band or high-frequency band, TRS, and sequence methods gave strongly related results. Conversely, weighted gain, X-AR, and Z exhibited lower agreement with all the other techniques. In addition, the use of mean BP instead of systolic BP in the sequence method decreased the relationships with the other estimates. Some procedures were unable to provide results when BRS estimates were expected to be very low in data sets (in patients with established baroreflex failure). The failure to provide BRS values was due to setting of algorithmic parameters too strictly. The discrepancies between procedures show that the choice of parameters and data handling should be considered before BRS estimation. These data are available on the web site (http://www.cbi.polimi.it/glossary/eurobavar.html) to allow the comparison of new techniques with this set of results.  相似文献   

7.
Phenological properties of woody species were compared between two urban climates during 1997 and 1998. The study areas were Chungdam Park, Chungdam-dong, Kangnam-gu, Seoul (the urban center, 43 species) and Namhan-sansung Area, Sansung-ri, Joongbu-myon, Kwangju Gun, Kyonggi Province (the urban periphery, 16 species). Distance between these sites was 13.5 km. The differences of budding, foliation, and flowering times (1997 versus 1998) were 10.9, 3.2, and 7.4 days, respectively. Species that budded and flowered earlier were strongly influenced by Nuttonson’s Index (Tn) of February and March, but those with later dates were only weakly influenced. Unlike for budding and flowering times, foliation time was determined by air temperature or other factors in the leaf-growing season rather than by Tn. The Tn influence over phenology was stronger in shrubs and lianas than in trees. Phenophases in Chungdam Park appeared earlier than those in the Namhansansung area. The phenological differences between the two areas were 7.3 days in budding time, 8.3 days in foliation time, and 10.2 days in flowering time in mean values, with variations among species. Based on flowering-time data, the phenological variation between the two areas was equivalent to a 2.5° latitude difference. Budding time varied the most (20 days) inZelkova serrate, compared with only 3 days forPrunus padus. Differences in foliation time ranged from 15 days (inAlnus hirsute andStyrax obassia) to 0 days (P. padus). Flowering time differences were largest (24 days) inRhododendron mucronulatum and smallest (2 days) inP. padus. One can conclude that heat pollution in the urban center in Seoul severely changed phenology, and that sensitivity to that pollution differed among plant species.  相似文献   

8.
The effect of pectic oligomers (OG) on ethylene biosynthesis, electrolyte leakage (EL), and CO(2) production was studied in discs excised from zucchini fruit (Cucurbita pepo L.) and stored at 20 or 2.5 degrees C. At 20 degrees C, OG enhanced ethylene biosynthesis and had a transient effect on decreasing EL, but showed little effect on respiratory rate; both the amount and size of the oligomer were important in changing both ethylene synthesis and EL. At 2.5 degrees C, OG increased both ethylene biosynthesis and respiratory rate with a maximum effect at 100 microg of oligomer and peaking at 6 h; shorter oligomers demonstrated an even greater effect on ethylene biosynthesis, but differences were smaller in respiratory rate. EL at 2.5 degrees C was affected most by 1 microg of OG and by monomeric galacturonic acid, with transient increases that peaked at 8 h. We suggest a signaling role for OG in the early steps of cold acclimation or chilling injury.  相似文献   

9.
Five Coffea genotypes differing in their sensitivity to low positive temperatures were compared with regard to the effects of chilling on membrane integrity, as well as their ability to recover from cold-induced injury upon re-warming. Membrane damage was evaluated through electrolyte leakage, changes in membrane lipid composition and malondialdehyde (MDA) production in control conditions (25/20 degrees C, day/night), after a gradual temperature decrease period to 15/10 degrees C, after chilling treatment (3 nights at 4 degrees C) and upon re-warming to 25/20 degrees C during 6 days (recovery). C. dewevrei showed the highest electrolyte leakage at 15/10 degrees C and after chilling. This was due mainly to lipid degradation observed at 15/10 degrees C, reflecting strong membrane damage. Furthermore, MDA production after chilling conditions indicated the occurrence of lipid peroxidation. A higher susceptibility of C. dewevrei to cold also was inferred from the complete absence of recovery as regards permeability, contrary to what was observed in the remaining plants. Apoat? and Piat? presented significant leakage values after chilling. However, such effects were reversible under recovery conditions. Exposure to cold (15/10 degrees C and 3 x 15/4 degrees C) did not significantly affect membrane permeability in Catuaí and Icatú. Furthermore, no significant MDA production was observed even after chilling treatments in Apoat?, Piat?, Catuaí and Icatú, suggesting that the four genotypes had the ability to maintain membrane integrity and/or repair membrane damage caused by low temperatures. Apoat?, Piat? and, to a lower extent, Catuaí, were able to cope with gradual temperature decrease through an enhanced lipid biosynthesis. After acclimation, Piat? and Catuaí showed a lowering of digalactosyldiacylglycerol to monogalactosyldiacylglycerol ratio (MGDG/DGDG) as a result of enhanced DGDG synthesis, which represents an increase in membrane stability. The same was observed in Apoat? after chilling, in spite of phospholipids decrease. The studied parameters clearly indicated that chilling induced irreversible membrane damage in C. dewevrei. We also concluded that increased lipid synthesis, lower MGDG/DGDG ratio, and changes in membrane unsaturation occurring during acclimation to low temperatures may be critical factors in maintenance of cellular integrity under chilling.  相似文献   

10.
The influence of unfavourable climatic conditions at the onset of the growth period on chilling-sensitive tomato (Lycopersicon esculentum Mill., cv. Abunda) was studied by exposing young plants to combinations of low temperature and low light (60–100 mol quanta · m–2 · s–1) for several weeks. When the temperature did not decrease below a critical point (8 ° C) no loss of developmental capacity of the plants was detected. However, while new leaves were readily formed upon return to normal growth conditions (22/18 °C, day/night, in a greenhouse), net accumulation of biomass showed a lag phase of approximately one week. This delay was accompanied by a strong, irreversible inhibition of photosynthesis in the fully expanded leaves which had been exposed to the chilling treatment. When plants were subjected to temperatures below 8 ° C, survival rates decreased after three weeks at 6 ° C and irreversible damage of apical meristematic tissue occurred. Drought-hardening prior to chilling ensured survival at 6 ° C and protected the plants against meristem loss.Abreviation Chl chlorophyll Thanks are due to G.P. Telkamp for technical assistance. This research is financially supported by the Netherlands Technology Foundation (STW, Utrecht, The Netherlands), and is coordinated by the Foundation for Biological Research (BION, 's-Gravenhage, The Netherlands).  相似文献   

11.
Many techniques have been applied to understand viral cell-to-cell movement in host plants, but little progress has been made in understanding viral vascular transport mechanisms. We propose the use of chlorophyll fluorescence imaging techniques, not only to diagnose the viral infection, but also to follow the movement of the virus through the vascular system and its subsequent spread into the leaves. In Nicotiana benthamiana plants, imaging of chlorophyll fluorescence parameters such as ФPSII and NPQ proved useful to follow infections with Pepper mild mottle virus. The results demonstrate a correlation between changes in the chlorophyll fluorescence parameters and the viral distribution analyzed by tissue printing.  相似文献   

12.
The effect of high light on spatial distribution of chlorophyll (Chl) fluorescence parameters over a lichen thallus (Umbilicaria antarctica) was investigated by imaging of Chl fluorescence parameters before and after exposure to high light (1500 micro mol m (-2) s (-1), 30 min at 5 degrees C). False colour images of F (V)/F (M) and Phi (II) distribution, taken over thallus with 0.1 mm (2) resolution, showed that maximum F (V)/F (M) and Phi (II) values were located close to the thallus centre. Minimum values were typical for thallus margins. After exposure to high light, a differential response of F (V)/F (M) and Phi (II) was found. The marginal thallus part exhibited a loss of photosynthetic activity, manifested as a lack of Chl fluorescence signal, and close-to-centre parts showed a different extent of F (V)/F (M) and Phi (II) decrease. Subsequent recovery in the dark led to a gradual return of F (V)/F (M) and Phi (II) to their initial values. Fast (30 min) and slow (1 - 22 h) phase of recovery were distinguished, suggesting a sufficient capacity of photoprotective mechanisms in U. antarctica to cope with low-temperature photoinhibition. Glutathione and xanthophyll cycle pigments were analyzed by HPLC. High light led to an increase in oxidized glutathione (GSSG), and a conversion of violaxanthin to zeaxanthin, expressed as their de-epoxidation state (DEPS). The responses of GSSG and DEPS were reversible during subsequent recovery in the dark. GSSG and DEPS were highly correlated to non-photochemical quenching (NPQ), indicating involvement of these antioxidants in the resistance of U. antarctica to high-light stress. Heterogeneity of Chl fluorescence parameters over the thallus and differential response to high light are discussed in relation to thallus anatomy and intrathalline distribution of the symbiotic alga Trebouxia sp.  相似文献   

13.
In the present study we explored the possibility of assessing the allocation of photons absorbed by photosystem II (PSII) antennae to thermal energy dissipation and photosynthetic electron transport in leaves of several plant species under field conditions. Changes in chlorophyll fluorescence parameters were determined in situ over the course of an entire day in the field in sun-exposed leaves of two species with different maximal rates of photosynthesis, Helianthus annuus (sunflower) and Vinca major. Leaves of Vinca minor (periwinkle) growing in a deeply shaded location were also monitored. We propose using diurnal changes in the efficiency of open PSII centers (F′v/F′m) in these sun and shade leaves to (a) assess diurnal changes in the allocation of absorbed light to photochemistry and thermal energy dissipation and, furthermore, (b) make an estimate of changes in the rate of thermal energy dissipation, an analogous expression to the rate of photochemistry. The fraction of light absorbed in PSII antennae that is dissipated thermally (D) is proposed to be estimated from D = 1-F′v/F′m, in analogy to the widely used estimation of the fraction of light absorbed in PSII antennae (P) that is utilized in PSII photochemistry from P = F′v/F′m× qP (where qP is the coefficient for photochemical quenching; Genty, B., Briantais, J.-M. & Baker, N. R. 1989. Biochim. Biophys. Acta 990: 87-92). The rate of thermal dissipation is consequently given by D × PFD (photon flux density), again in analogy to the rate of photochemistry P × PFD, both assuming a matching behavior of photosystems I and II. Characterization of energy dissipation from the efficiency of open PSII centers allows an assessment from a single set of measurements at any time of day; this is particularly useful under field conditions where the fully relaxed reference values of variable or maximal fluorescence needed for the computation of nonphotochemical quenching may not be available. The usefulness of the assessment described above is compared with other currently used parameters to quantify nonphotochemical and photochemical chlorophyll fluorescence quenching.  相似文献   

14.
A chlorophyll fluorescence technique was applied to anin situ study on the effects of low temperature and high light stresses onSpirulina cultures grown outdoors in controlled tubular photobioreactors at high (1.1 g L–1) and low (0.44 g L–1) biomass concentrations. Diurnal changes in PSII photochemistry (F v/F m) after 15 min of darkness, or in the light (dF/F m), and non-photochemical (qN) quenching were measured using a portable, pulse-amplitude-modulated fluorometer. The depression of theF v/F m ratio ofSpirulina cultures grown outdoors at 25°C (i.e. 10°C below optimum for growth) and 0.44 g L–1, reached 30% at the middle of the day. At the same time of the day thedF/F m ratio showed a reduction of up to 52%. The depression of bothF v/F m anddF/F m was lower in the cultures grown at 1.1 g L–1. Photoinhibition reduced the daily productivity of the culture grown at 0.44 g L–1 and 25°C by 33% with respect to that grown at 35°C. Changes in the growth yields of the cultures grown under different temperatures and growth rates correlate well with analogous changes in photon yield (dF/F m). Simple measurements of photochemical yield (F v/F m) can be used to test the physiological status ofSpirulina cultures. The results indicate that the saturating pulse fluorescence technique, when usedin situ, is a powerful tool for assessment of the photosynthetic characteristics of outdoor cultures ofSpirulina.  相似文献   

15.
低温胁迫对水稻幼苗不同叶龄叶片叶绿素荧光特性的影响   总被引:6,自引:0,他引:6  
以‘蜀恢162’(‘Shuhui 162’)、‘糯89-1’(‘Nuo 89-1’)、‘蜀恢162/糯89-1’(‘Shuhui 162/Nuo 89-1’)、‘奇妙香’(‘Qimiaoxiang’)和早黄矮(‘Zaohuang’ai’)5个水稻(Oryza sativa L.)品种(系)为研究对象,采用叶绿素荧光成像系统研究了低温(4℃)胁迫对水稻3叶期幼苗不同叶龄叶片叶绿素荧光特性的影响。结果表明:经低温胁迫处理后,5个水稻品种(系)幼苗3个叶龄叶片的各叶绿素荧光参数变化有明显差异,其中第一叶的各项参数均降至0。经低温处理后5个水稻品种(系)幼苗3片叶片的PSⅡ最大光化学量子产量(Fv/Fm)均明显小于对照(25℃),其中第一叶的降低幅度最大、第三叶最小。经低温胁迫处理后,5个水稻品种(系)幼苗第三叶的非光化学淬灭系数(qN)均显著大于对照,耐冷性品种‘糯89-1’幼苗第二叶的qN较对照显著增大,而其他水稻品种(系)幼苗第二叶的qN均显著小于对照;‘糯89-1’幼苗第二叶的光化学淬灭系数(qP)较对照略有增大,第三叶的qP显著大于对照;‘早黄矮’幼苗第三叶的qP也大于对照但差异不显著,而其余水稻品种(系)幼苗第二叶和第三叶的qP均显著小于对照。经低温胁迫后5个水稻品种(系)幼苗3片叶片的PSⅡ最大相对电子传递速率(rETRmax)和半饱和光强(Ik)均显著小于对照;除‘糯89-1’幼苗第三叶外,5个水稻品种(系)幼苗3片叶片的快速光响应曲线初始斜率(α)也均显著小于对照,总体上第一叶的rETRmax、Ik和α下降幅度最大、第三叶最小。研究结果揭示:受低温胁迫后,叶片自身生理差异是导致水稻幼苗不同叶龄叶片受伤害程度不同的主要因素。  相似文献   

16.
The binding constants of various olefins were determined with a Triton X-100 extract of mung bean sprouts. The olefins tested included compounds that have been reported to induce an ethylene response in vivo as well as olefins reported to block the ethylene response. Both types of compounds were bound by the Triton X-100 extract, and the binding constants in vitro were usually considerably lower than those obtained in in vivo studies as measured by gas phase concentrations. Increased solubility due to Triton X-100 solution appears to be partly responsible. The in vitro binding order of compounds reported to induce an ethylene response was similar to their order of in vivo activity. Also, the compounds which gave an anti-ethylene response in vivo bound to the extract in approximately the same order as their in vivo effectiveness. These results suggest that binding of olefins is not the only factor necessary for an ethylene response. Although binding is necessary for activity, another factor must be involved after binding, and this may be -acceptance.  相似文献   

17.
Here we report on the root hydraulic properties of intact and excised root systems of two maize genotypes differing in chilling sensitivity (Z7, tolerant and Penjalinan, sensitive) subjected for 3 d to 5 °C. When root hydraulic conductance (L) was measured under a hydrostatic force using an excised root system in a pressure chamber, an initial decrease of L was observed in both genotypes. However, the value of L increased in the chilling tolerant genotype after 30 h at 5 °C; in the chilling sensitive Penjalinan genotype there was no such increase. Osmotic root hydraulic conductance was measured in excised root systems exuding under atmospheric pressure. We observed a progressive decline during the chilling treatment of the osmotic root hydraulic conductance in the chilling sensitive Penjalinan plants; however, after 54 h at 5 °C, the chilling tolerant Z7 plants had a significantly higher osmotic hydraulic conductance. Moreover, in the chilling tolerant plants we found an increase in the inhibition caused by HgCl2 of the osmotic hydraulic conductance during the chilling treatment, indicating a possible increase in the contribution of aquaporins to root hydraulic conductance in the chilling tolerant Z7 plants during chilling treatment.  相似文献   

18.
Global declines of macroalgal beds in coastal waters have prompted a plethora of studies attempting to understand the drivers of change within dynamic nearshore ecosystems. Photosynthetic measurements are good tools for assessing the consequences of numerous stressors of macroalgae, but there is somewhat of a disconnection between studies that focus on organism‐specific ecophysiological responses and those that address causes and consequences of shifts in macroalgal productivity. Our goal is to highlight the applications of two complementary tools for measuring photosynthesis—variable chlorophyll a fluorescence and photorespirometry—and provide guidance for the integration of physiology and ecology to understand the drivers of change in macroalgal communities. Photorespirometry can provide an integrated measure of whole‐community metabolism, including an estimate of the physiological costs associated with stressors, while fluorescence‐based techniques provide point measures of the efficiency of the photosynthetic apparatus within communities. Variable chlorophyll a fluorescence does not provide an estimate of carbon balance or integrated photosynthesis across either whole plants or whole communities but can be used to estimate the contribution of individual community components in the dynamic subcanopy environment to help us understand the mechanisms underlying observed responses. We highlight the importance of the highly dynamic light environment within macroalgal communities and call for better integration of physiological techniques in an ecological context to enhance our understanding of the responses of whole communities to local and global stressors.  相似文献   

19.
脱落酸对低温下雷公藤幼苗光合作用及叶绿素荧光的影响   总被引:3,自引:1,他引:3  
以1年生雷公藤扦插苗为试材,研究低温胁迫下不同浓度外源脱落酸(ABA,0、5、10、15、20、25 mg·L-1)叶面喷施处理对雷公藤叶片光合作用及叶绿素荧光参数的影响.结果表明:喷施20 mg·L-1的ABA能显著提高雷公藤幼苗的抗冷性,减缓低温下雷公藤叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(gs)、胞间CO2浓度(Ci)的下降幅度,提高幼苗叶片的光合能力.低温处理6 d后,随着ABA浓度上升,雷公藤叶片的初始荧光(Fo)下降,最大荧光(Fm)和PSII最大光化学效率(Fv/Fm)上升,PSII实际光化学量子产量(ΦPS)、光化学猝灭系数(qP)先下降后上升,而非光化学猝灭系数(qN)呈下降-上升-下降趋势.Pn、gs、qP、Fm和Fv/Fm均在20 mg·L-1ABA处理时达到峰值.不同浓度ABA的相对电子传递速率(rETR)随着光化光强度增加呈先上升后下降的趋势,当光化光强度(PAR)达到395 μmol·m-2s-1时,各处理的rETR达到最高值,其中25 mg·L-1和20 mg·L-1ABA处理分别比对照高17.1%和5.2%.雷公藤叶片ΦPSⅡ的光响应曲线均随光化光强度升高而下降,qN的光响应曲线则呈相反趋势.  相似文献   

20.
Abstract. It is suggested that increased levels of free cytosolic calcium ([Ca2+]cyt) may serve as the primary physiological transducer of chilling injury in plants. Numerous similarities between the effects of [Ca2+]cyt-raising treatments on plants and the effects of chilling temperatures on chilling-sensitive (CS) plants are noted. It is proposed that chilling temperatures may lead to increases in [Ca2+]cyt in CS plant cells by reducing the rate at which they exclude Ca2+ from their cytosol and that rapid cooling (coldshock) may cause rapid increases in [Ca2+]cyt due to the activation of voltage-dependent cation channels. Chill-induced increases in [Ca2+]cyt in the cells of CS plants may reflect either an inherent inability of such plants to maintain homeostatic levels of Ca2+ at low temperatures or a stress-induced reaction which has evolved to enable such cells to cope more effectively with the short-term hardships imposed by cold. Previous proposals concerning the physiological transduction of chilling injury are also discussed. It is argued that there is little evidence to suggest that the immediate effects of low temperatures on CS cells include either decreases in ATP levels, general increases in the passive permeability of membranes, or increased rates of fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号