共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown that at least four genes are specifically responsible for arylsulfatase synthesis in Klebsiella aerogenes. Mutations at chromosome site atsA result in enzymatically inactive arylsulfatase. Mutants showing constitutive synthesis of arylsulfatase (atsR) were isolated by using inorganic sulfate or cysteine as the sulfur source. Another mutation in which repression of arylsulfatase by inorganic sulfate or cysteine could not be relieved by tyramine was determined by genetic analysis to be on the tyramine oxidase gene (tyn). This site was distinguished from the atsC mutation site, which is probably concerned with the action or synthesis of corepressors of arylsulfatase synthesis. Genetic analysis with transducing phage PW52 showed that the order of mutation sites was atsC-atsR-atsA-tynA-tynB. On the basis of these results and previous physiological findings, we propose a new model for regulation of arylsulfatase synthesis. 相似文献
2.
Tyramine oxidase and regulation of arylsulfatase synthesis in Klebsiella aerogenes. 总被引:2,自引:11,他引:2 下载免费PDF全文
The participation of tyramine oxidase in the regulation of arylsulfatase synthesis in Klebsiella aerogenes was studied. Arylsulfatase was synthesized when this organism was grown with methionine or taurine as the sulfur source (nonrepressing conditions) and was repressed by inorganic sulfate or cysteine; this repression was relieved by tyramine and related compounds (derepressing conditions). Under nonrepressing conditions, arylsulfatase synthesis was not regulated by tyramine oxidase synthesis. However, derepression of arylsulfatase and induction of tyramine oxidase synthesis by tyramine were both antagonized by glucose and other carbohydrate compounds. The derepressed synthesis of arylsulfatase, like that of tyramine oxidase, was released from catabolite repression by use of tyramine as the sole source of nitrogen. A mutant strain that exhibits constitutive synthesis of glutamine synthetase and high levels of histidase when grown in glucose-ammonium medium was subject to the catabolite repression of both tyramine oxidase and arylsulfatase syntheses. Mutants in which repression of arylsulfatase could not be relieved by tyramine could not utilize tyramine as the sole source of nitrogen and were defective in the gene for tyramine oxidase. 相似文献
3.
Catabolite repression and derepression of arylsulfatase synthesis in Klebsiella aerogenes 总被引:7,自引:11,他引:7
When a mutant (Mao(-)) of Klebsiella aerogenes lacking an enzyme for tyramine degradation (monoamine oxidase) was grown with d-xylose as a carbon source, arylsulfatase was repressed by inorganic sulfate and repression was relieved by tyramine. When the cells were grown on glucose, tyramine failed to derepress the arylsulfatase synthesis. When grown with methionine as the sole sulfur source, the enzyme was synthesized irrespective of the carbon source used. Addition of cyclic adenosine monophosphate overcame the catabolite repression of synthesis of the derepressed enzyme caused by tyramine. Uptake of tyramine was not affected by the carbon source. We isolated a mutant strain in which derepression of arylsulfatase synthesis by tyramine occurred even in the presence of glucose and inorganic sulfate. This strain also produced beta-galactosidase in the presence of an inducer and glucose. These results, and those on other mutant strains in which tyramine cannot derepress enzyme synthesis, strongly suggest that a protein factor regulated by catabolite repression is involved in the derepression of arylsulfatase synthesis by tyramine. 相似文献
4.
Immunological study of the regulation of cellular arylsulfatase synthesis in Klebsiella aerogenes. 下载免费PDF全文
Regulation of cellular arylsulfatase synthesis in Klebsiella aerogenes was analyzed by immunological techniques. Antibody directed against the purified arylsulfatase from K. aerogenes W70 was obtained from rabbits and characterized by immunoelectrophoresis, double-diffusion, quantitative precipitation, and enzyme neutralization tests. Arylsulfatase was located in the periplasmic space when the wild-type strain was cultured with methionine or with inorganic sulfate plus tyramine, but not with inorganic sulfate without tyramine, as the sole sulfur source. Tyramine oxidase was retained in the membrane fraction prepared from cells grown in the presence of tyramine. Arylsulfatase protein was not synthesized in the presence of tyramine and inorganic sulfate by mutant K611, which is deficient in tyramine oxidase (tynA). We conclude that the expression of the arylsulfatase gene (atsA) is regulated by the expression of tynA and that inorganic sulfate serves as a corepressor. In addition, strains mutated in the atsA gene were analyzed by using antibody. 相似文献
5.
Tyramine oxidase in Klebsiella aerogenes is highly specific for tyramine, dopamine, octopamine, and norepinephrine, and its synthesis is induced specifically by these compounds. The enzyme is present in a membrane-bound form. The Km value for tyramine is 9 X 10(-4) M. Tyramine oxidase synthesis was subjected to catabolite repression by glucose in the presence of ammonium salts. Addition of cyclic adenosine 3',5'-monophosphate (cAMP) overcame the catabolite repression. A mutant strain, K711, which can produce a high level of beta-galactosidase in the presence of glucose and ammonium chloride, can also synthesize tyramine oxidase and histidase in the presence of inducer in glucose ammonium medium. Catabolite repression of tyramine oxidase synthesis was relieved when the cells were grown under conditions of nitrogen limitation, whereas beta-galactosidase was strongly repressed under these conditions. A cAMP-requiring mutant, MK54, synthesized tyramine oxidase rapidly when tyramine was used as the sole source of nitrogen in the absence of cAMP. However, a glutamine synthetase-constitutive mutant, MK94, failed to synthesize tyramine oxidase in the presence of glucose and ammonium chloride, although it synthesized histidase rapidly under these conditions. These results suggest that catabolite repression of tyramine oxidase synthesis in K. aerogenes is regulated by the intracellular level of cAMP and an unknown cytoplasmic factor that acts independently of cAMP and is formed under conditions of nitrogen limitation. 相似文献
6.
7.
Derepression of arylsulfatase synthesis in Aerobacter aerogenes by tyramine 总被引:3,自引:13,他引:3 下载免费PDF全文
Studies were made on the effect of tyramine on arylsulfatase synthesis in mutants of Aerobacter aerogenes ATCC 9621 deficient in enzymes involved in tyramine degradation. As shown previously, some sulfur compounds, such as inorganic sulfate, repressed enzyme synthesis while others, such as methionine, did not. Tyramine caused derepression of enzyme synthesis, which is repressed by inorganic sulfate. The present work showed that, although tyramine readily derepressed arylsulfatase synthesis, metabolites of tyramine in either the wild-type or mutant strains did not, so that the derepression is due to the particular structure of tyramine. Kinetic studies on the cells indicated that incorporation of sulfur into protein and enzyme synthesis occurred on supply of either a sulfur compound, which did not cause repression, or of tyramine, which caused derepression, irrespective of the type of sulfur compound added, if any. 相似文献
8.
Genetic control of tyramine oxidase, which is involved in derepressed synthesis of arylsulfatase in Klebsiella aerogenes. 总被引:1,自引:4,他引:1 下载免费PDF全文
Mutants of Klebsiella aerogenes with three types of mutations affecting regulation of tyramine oxidase were isolated by a simple selection method. In the first type, the mutation (tynP) was closely linked to the structural gene for tyramine oxidase tynA). The order of mutation sites was atsA-tynP-tynA. In the second type, the mutation that relieves catabolite repression of the syntheses of several catabolite repression-sensitive enzymes are not linked to the tyn gene by P1 transduction. These strains contained high levels of cyclic adenosine 5'-monophosphate when grown on glucose. The third type of mutation, in which tyramine oxidase was synthesized constitutively, was shown by genetic analysis to involve mutations of tynP and tynR. The tynR gene was not linked to tynA. Results using the constitutive mutants showed that the constitutive expression of the tynA gene resulted in depression of arylsulfatase synthesis in the absence of tyramine. 相似文献
9.
10.
The utilization of glycerol as a carbon source for growth by Klebsiella aerogenes, strain 2103, involves separate aerobic (sn-glycerol-3-phosphate or G3P) and anaerobic (dihydroxyacetone or DHA) pathways of catabolism. Enzyme and transport activities of the aerobic pathway are elevated in cells grown under oxygenated conditions on glycerol or G3P. Anaerobic growth on G3P as carbon source requires the presence of an exogenous hydrogen acceptor such as fumarate; cells thus grown also are highly induced in the G3P pathway. Anaerobic growth on glycerol requires no exogenous hydrogen acceptors; cells thus grown are highly induced in the DHA pathway but almost uninduced in the G3P pathway and the addition of fumarate electron acceptors has no effect on the relative levels of the two pathways. When both glycerol and G3P are provided anaerobically with fumarate, the DHA pathway is still preferentially induced, which probably accounts for the exclusive utilization of glycerol until its exhaustion. These observations suggest the presence of a regulatory control of G3P pathway imposed by the operation of the DHA pathway. 相似文献
11.
12.
13.
An L-asparaginase has been purified some 250-fold from extracts of Klebsiella aerogenes to near homogeneity. The enzyme has a molecular weight of 141,000 as measured by gel filtration and appears to consist of four subunits of molecular weight 37,000. The enzyme has high affinity for L-asparagine, with a Km below 10(-5) M, and hydrolyzes glutamine at a 20-fold lower rate, with a Km of 10(-3) M. Interestingly, the enzyme exhibits marked gamma-glutamyltransferase activity but comparatively little beta-aspartyl-transferase activity. A mutant strain lacking this asparaginase has been isolated and grows at 1/2 to 1/3 the rate of the parent strain when asparagine is provided in the medium as the sole source of nitrogen. This strain grows as well as the wild type when the medium is supplemented with histidine or ammonia. Glutamine synthetase activates the formation of L-asparaginase. Mutants lacking glutamine synthetase fail to produce the asparaginase, and mutants with a high constitutive level of glutamine synthetase also contain the asparaginase at a high level. Thus, the formation of asparaginase is regulated in parallel with that of other enzymes capable of supplying the cell with ammonia or glutamate, such as histidase and proline oxidase. Formation of the asparaginase does not require induction by asparaginase and is not subject to catabolite repression. 相似文献
14.
Klebsiella aerogenes was found to contain a specific L-serine dehydrase that was induced by threonine, glycine or leucine, but not by its substrate. Cellular concentrations were sensitive to carbon rather than nitrogen sources in the growth medium. A nonspecific isoleucine-sensitive L-threonine dehydrase supplemented the specific L-serine dehydrase activity. K. aerogenes also contains a leucine-inducible L-threonine dehydrogenase which probably initiated a threonine-utilization pathway in which the serine-specific dehydrate participated. Strains that were altered in their ability to metabolize serine differed in either L-serine dehydrase or L-threonine dehydrase activity. Thus, K. aerogenes growing on L-serine as a sole nitrogen source relies upon two enzymes that metabolize the amino acid as subsidiary functions. 相似文献
15.
Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase. 相似文献
16.
Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase. 总被引:9,自引:7,他引:9 下载免费PDF全文
Urease was purified 24-fold from extracts of Klebsiella aerogenes. The enzyme has a molecular weight of 230,000 as determined by gel filtration, is highly substrate specific, and has a Km for urea of 0.7 mM. A mutant strain lacking urease was isolated; it failed to grow with urea as the sole source of nitrogen but did grow on media containing other nitrogen sources such as ammonia, histidine, or arginine. Urease was present at a high level when the cells were starved for nitrogen; its synthesis was repressed when the external ammonia concentration was high. Formation of urease did not require induction by urea and was not subject to catabolite repression. Its synthesis was controlled by glutamine synthetase. Mutants lacking glutamine synthetase failed to produce urease, and mutants forming glutamine synthetase at a high constitutive level also formed urease constitutively. Thus, the formation of urease is regulated like that of other enzymes of K. aerogenes capable of supplying the cell with ammonia or glutamate. 相似文献
17.
Regulation of enzyme formation in Klebsiella aerogenes by episomal glutamine synthetase of Escherichia coli. 总被引:2,自引:16,他引:2 下载免费PDF全文
We studied the physiology of cells of Klebsiella aerogenes containing the structural gene for glutamine synthetase (glnA) of Escherichia coli on an episome. The E. coli glutamine synthetase functioned in cells of K. aerogenes in a manner similar to that of the K. aerogenes enzyme: it allowed the level of histidase to increase and that of glutamate dehydrogenase to decrease during nitrogen-limited growth. The phenotype of mutations in the glnA site was restored to normal by the introduction of the episomal glnA+ gene. These results are consistent with the hypothesis that glutamine synthetase regulates the function of its own structural gene. 相似文献
18.
Cloning and nucleotide sequence of a negative regulator gene for Klebsiella aerogenes arylsulfatase synthesis and identification of the gene as folA. 下载免费PDF全文
A negative regulator gene for synthesis of arylsulfatase in Klebsiella aerogenes was cloned. Deletion analysis showed that the regulator gene was located within a 1.6-kb cloned segment. Transfer of the plasmid, which contains the cloned fragment, into constitutive atsR mutant strains of K. aerogenes resulted in complementation of atsR; the synthesis of arylsulfatase was repressed in the presence of inorganic sulfate or cysteine, and this repression was relieved, in each case, by the addition of tyramine. The nucleotide sequence of the 1.6-kb fragment was determined. From the amino acid sequence deduced from the DNA sequence, we found two open reading frames. One of them lacked the N-terminal region but was highly homologous to the gene which codes for diadenosine tetraphosphatase (apaH) in Escherichia coli. The other open reading frame was located counterclockwise to the apaH-like gene. This gene was highly homologous to the gene which codes for dihydrofolate reductase (folA) in E. coli. We detected 30 times more activity of dihydrofolate reductase in the K. aerogenes strains carrying the plasmid, which contains the arylsulfatase regulator gene, than in the strains without plasmid. Further deletion analysis showed that the K. aerogenes folA gene is consistent with the essential region required for the repression of arylsulfatase synthesis. Transfer of a plasmid containing the E. coli folA gene into atsR mutant cells of K. aerogenes resulted in repression of the arylsulfatase synthesis. Thus, we conclude that the folA gene codes a negative regulator for the ats operon. 相似文献
19.
Regulation of assimilatory nitrate reductase formation in Klebsiella aerogenes W70. 总被引:2,自引:8,他引:2 下载免费PDF全文
Klebsiella aerogenes W70 could grow aerobically with nitrate or nitrite as the sole nitrogen source. The assimilatory nitrate reductase and nitrite reductase responsible for this ability required the presence of either nitrate or nitrite as an inducer, and both enzymes were repressed by ammonia. The repression by ammonia, which required the NTR (nitrogen regulatory) system (A. Macaluso, E. A. Best, and R. A. Bender, J. Bacteriol. 172:7249-7255, 1990), did not act solely at the level of inducer exclusion, since strains in which the expression of assimilatory nitrate reductase and nitrite reductase was was independent of the inducer were also susceptible to repression by ammonia. Insertion mutations in two distinct genes, neither of which affected the NTR system, resulted in the loss of both assimilatory nitrate reductase and nitrite reductase. One of these mutants reverted to the wild type, but the other yielded pseudorevertants at high frequency that were independent of inducer but still responded to ammonia repression. 相似文献
20.
Siroheme, the cofactor for sulfite and nitrite reductases, is formed by methylation, oxidation, and iron insertion into the tetrapyrrole uroporphyrinogen III (Uro-III). The CysG protein performs all three steps of siroheme biosynthesis in the enteric bacteria Escherichia coli and Salmonella enterica. In either taxon, cysG mutants cannot reduce sulfite to sulfide and require a source of sulfide or cysteine for growth. In addition, CysG-mediated methylation of Uro-III is required for de novo synthesis of cobalamin (coenzyme B(12)) in S. enterica. We have determined that cysG mutants of the related enteric bacterium Klebsiella aerogenes have no defect in the reduction of sulfite to sulfide. These data suggest that an alternative enzyme allows for siroheme biosynthesis in CysG-deficient strains of Klebsiella. However, Klebsiella cysG mutants fail to synthesize coenzyme B(12), suggesting that the alternative siroheme biosynthetic pathway proceeds by a different route. Gene cysF, encoding an alternative siroheme synthase homologous to CysG, has been identified by genetic analysis and lies within the cysFDNC operon; the cysF gene is absent from the E. coli and S. enterica genomes. While CysG is coregulated with the siroheme-dependent nitrite reductase, the cysF gene is regulated by sulfur starvation. Models for alternative regulation of the CysF and CysG siroheme synthases in Klebsiella and for the loss of the cysF gene from the ancestor of E. coli and S. enterica are presented. 相似文献