首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential scanning calorimetry (DSC) was used to study the effect of troponin (Tn) and its isolated components on the thermal unfolding of skeletal muscle tropomyosin (Tm) bound to F-actin. It is shown that in the absence of actin the thermal unfolding of Tm is expressed in two well-distinguished thermal transitions with maxima at 42.8 and 53.8°C. Interaction with F-actin affects the character of thermal unfolding of Tm leading to appearance of a new Tm transition with maximum at about 48°C, but it has no influence on the thermal denaturation of F-actin stabilized by aluminum fluoride, which occurs within the temperature region above 70°C. Addition of troponin leads to significant increase in the cooperativity and enthalpy of the thermal transition of the actin-bound Tm. The most pronounced effect of Tn was observed in the absence of calcium. To elucidate how troponin complex affects the properties of Tm, we studied the influence of its isolated components, troponin I (TnI) and troponin T (TnT), on the thermal unfolding of actin-bound Tm. Isolated TnT and TnI do not demonstrate cooperative thermal transitions on heating up to 100°C. However, addition of TnI, and especially of TnT, to the F-actin–Tm complex significantly increased the cooperativity of the thermal unfolding of actin-bound tropomyosin.  相似文献   

2.
Background: In asymptomatic severe aortic stenosis (ASAS), treatment decisions are made on an individual basis, and case management presents a clinical conundrum.

Methods: We prospectively phenotyped consecutive patients with ASAS using echocardiography, exercise echocardiography, cardiac MRI and biomarkers (NT-proBNP, high-sensitivity troponin T (hs-TnT) and ST2) (n?=?58). The primary endpoint was a composite of cardiovascular death, new-onset symptoms, cardiac hospitalization, guideline-driven indication for valve replacement and cardiovascular death at 12?months.

Results: During the first year, 46.6% patients met primary endpoint. In multivariable analysis, aortic regurgitation ≥2 (p?=?0.01) and hs-TnT (p?=?0.007) were the only independent predictors of the primary endpoint. The best cutoff value was identified as hs-TnT >10ng/L, which was associated with a ~10-fold greater risk of the primary endpoint (HR, 9.62; 95% CI, 2.27–40.8; p?=?0.002). A baseline predictive model including age, sex and variables showing p?<?0.10 in univariable analyses showed an area under the curve (AUC) of 0.79(0.66–0.91). Incorporation of hs-TnT into this model increased the AUC to 0.90(0.81–0.98) (p?=?0.03). Patient reclassification with the model including hs-TnT yielded an NRI of 1.28(0.46–1.78), corresponding to 43% adequately reclassified patients.

Conclusions: In patients with ASAS, hs-TnT >10ng/L was associated with high risk of events within 12?months. Including hs-TnT in routine ASAS management markedly improved prediction metrics.  相似文献   


3.
The relaxation and contraction in vertebrate skeletal muscle are regulated by Ca2+ through troponin and tropomyosin, which are located in the thin filament. Troponin is composed of three components, troponins C, I and T. In this review article, the Ca2+-regulatory mechanism is discussed with particular reference to the regulatory properties of troponin T.  相似文献   

4.
Our group has documented that myocardial performance is impaired in the hearts of chronically diabetic rats and rabbits. Abnormalities in the contractile proteins and regulatory proteins may be responsible for the mechanical defects in the streptozotocin (STZ)-diabetic hearts. Previously, the major focus of our research on contractile proteins in abnormal states has concentrated on myosin ATPase and its isoenzymes. Our present study is based on the overall hypothesis that regulatory proteins, in addition to contractile protein, myosin contribute to altered cardiac contractile performance in the rat model of diabetic cardiomyopathy. The purpose of our research was to define the role of cardiac regulatory proteins (troponin-tropomyosin) in the regulation of actomyosin system in diabetic cardiomyopathy.For baseline data, myofibrillar ATPase studies were conducted in the myofibrils from control and diabetic rats. To focus on the regulatory proteins (troponin and tropomyosin), individual proteins of the cardiac system were reconstituted under controlled conditions. By this approach, myosin plus actin and troponin-tropomyosin from the normal and diabetic animals could be studied enzymatically. The proteins were isolated from the cardiac muscle of control and STZ-diabetic (4 weeks) rats. Sodium dodecyl sulfate gel electrophoretic patterns demonstrate differences in the cardiac TnT and TnI regions of diabetic animals suggesting the different amounts of TnT and/or TnI or possibly different cardiac isozymes in the regulatory protein complex. Myofibrils probed with a monoclonal antibody TnI-1 (specific for adult cardiac TnI) show a downregulation of cardiac TnI in diabetics when compared to its controls. Enzymatic data confirm a diminished calcium sensitivity in the regulation of the cardiac actomyosin system when regulatory protein(s) complex was recombined from diabetic hearts. Actomyosin ATPase activity in the hearts of diabetic animals was partially reversed when myosin from diabetic rats was regulated with the regulatory protein complex isolated from control hearts. To our knowledge, this is the first study which demonstrates that the regulatory proteins from normal hearts can upregulate cardiac myosin isolated from a pathologic rat model of diabetes. This diminished calcium sensitivity along with shifts in cardiac myosin heavy chain (V1V3) may be partially responsible for the impaired cardiac function in the hearts of chronic diabetic rats. (Mol Cell Biochem151: 165–172, 1995)  相似文献   

5.
6.
The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions.  相似文献   

7.
Using surface plasmon resonance (SPR)-based biosensor analysis and fluorescence spectroscopy, the apparent kinetic constants, k(on) and k(off), and equilibrium dissociation constant, K(d), have been determined for the binding interaction between rabbit skeletal troponin C (TnC) and rabbit skeletal troponin I (TnI) regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). To carry out SPR analysis, a new peptide delivery/capture system was utilized in which the TnI peptides were conjugated to the E-coil strand of a de novo designed heterodimeric coiled-coil domain. The TnI peptide conjugates were then captured via dimerization to the opposite strand (K-coil), which was immobilized on the biosensor surface. TnC was then injected over the biosensor surface for quantitative binding analysis. For fluorescence spectroscopy analysis, the environmentally sensitive fluoroprobe 5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid (1,5-IAEDANS) was covalently linked to Cys98 of TnC and free TnI peptides were added. SPR analysis yielded equilibrium dissociation constants for TnC (plus Ca(2+)) binding to the C-terminal TnI regulatory peptides TnI(96-131) and TnI(96-139) of 89nM and 58nM, respectively. The apparent association and dissociation rate constants for each interaction were k(on)=2.3x10(5)M(-1)s(-1), 2.0x10(5)M(-1)s(-1) and k(off)=2.0x10(-2)s(-1), 1.2x10(-2)s(-1) for TnI(96-131) and TnI(96-139) peptides, respectively. These results were consistent with those obtained by fluorescence spectroscopy analysis: K(d) being equal to 130nM and 56nM for TnC-TnI(96-131) and TnC-TnI(96-139), respectively. Interestingly, although the inhibitory region peptide (TnI(96-115)) was observed to bind with an affinity similar to that of TnI(96-131) by fluorescence analysis (K(d)=380nM), its binding was not detected by SPR. Subsequent investigations examining salt effects suggested that the binding mechanism for the inhibitory region peptide is best characterized by an electrostatically driven fast on-rate ( approximately 1x10(8) to 1x10(9)M(-1)s(-1)) and a fast off-rate ( approximately 1x10(2)s(-1)). Taken together, the determination of these kinetic rate constants permits a clearer view of the interactions between the TnC and TnI proteins of the troponin complex.  相似文献   

8.
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC.  相似文献   

9.
10.
Abstract

Purpose: The Fourth Universal Definition of Myocardial Infarction (MI) has highlighted the different pathophysiological mechanisms that may lead to ischaemic and non-ischaemic myocardial injury and has emphasised that the diagnosis of myocardial infarction requires the presence of acute myocardial ischaemia in the setting of acute myocardial injury. This case based review intends to illustrate basic principles on how to apply this new, revised definition in clinical practice.

Methods and Results: The distinction between different types of MIs (type 1 or type 2) and the delineation of MI from acute non-ischaemic myocardial injury may be challenging in individual patients, which is illustrated by presenting and discussing real-life routine cases.

Conclusions: Type 1?MI is a consequence of coronary plaque rupture or erosion with intracoronary thrombus formation that is usually apparent on coronary angiography. Plausible triggering mechanisms causing myocardial oxygen supply/demand mismatch must be identified for the diagnosis of type 2?MI and its treatment should focus initially on management of the underlying disease attributable to acute myocardial ischaemia.  相似文献   

11.
In this study, 10 troponin T isoforms from adult porcine skeletal muscle messenger RNA were clarified. These were eight fast- and two slow-type isoforms. Fast-type isoforms had three and two variable exons in the N-terminal and the C-terminal region respectively. Slow-type isoforms had one variable exon in the N-terminal region.  相似文献   

12.
Low angle X-ray diffraction patterns were recorded from crab leg muscle in living resting state and in rigor (glycerol-extracted). Both resting and rigor patterns showed a series of layer-lines arising from a helical arrangement of actin subunits in the thin filaments. In the resting state, the crossover repeat of the long-pitch actin helices was 36.6 nm, and the symmetry of the genetic actin helix was an intermediate between 2612 and 2813. When the muscle went into rigor, the crossover repeat changed to 38.3 nm and the helical symmetry to 2813.In the living resting pattern, six other reflections were observed on the meridian and in the near-meridional region. These were indexed as orders of 2 × 38.2 nm and could be assigned to troponin molecules; the spacings and the intensity distributions of these reflections could be explained by the model proposed by Ohtsuki (1974) for the arrangement of troponin molecules in the thin filaments.The muscle in rigor gave meridional and near-meridional reflections at orders of 2 × 38.3 nm. These were identified as the same series of reflections as was assigned to troponin in the living resting pattern, but were more intense and could be seen up to higher orders. We consider that the myosin heads attached to the thin filament at regular intervals along its axis also contribute to these reflections in the rigor pattern.  相似文献   

13.
X-ray patterns from lobster and crayfish muscles show very clear layer lines from the thin filaments, well separated from the myosin layer lines. The intensities in patterns from relaxed muscles include an important contribution from the regulatory proteins, and allow the arrangement of the troponin complexes to be deduced. Moreover, the troponin diffraction indirectly provides an accurate value for the pitch of the actin helix in relaxed muscle.In rigor, the attachment of cross-bridges modifies the intensities. These X-ray patterns support Reedy's (1968) concept that cross-bridges in rigor attach only to certain azimuths on the actin filaments (“target areas”); the 145 Å repeat of their origins on the thick filaments is not reflected in the pattern of attachment. Our calculations show that the observed intensities agree quantitatively with those expected for models based on such attachment, but depend significantly on the locations of the troponin complexes. The arrangement of the filament components is discussed in terms of design requirements. Our conclusions may be applicable to many other muscles, especially insect flight muscle and other invertebrate muscles.  相似文献   

14.
Activation of striated muscle contraction is a highly cooperative signal transduction process converting calcium binding by troponin C (TnC) into interactions between thin and thick filaments. Once calcium is bound, transduction involves changes in protein interactions along the thin filament. The process is thought to involve three different states of actin-tropomyosin (Tm) resulting from changes in troponin's (Tn) interaction with actin-Tm: a blocked (B) state preventing myosin interaction, a closed (C) state allowing weak myosin interactions and favored by calcium binding to Tn, and an open or M state allowing strong myosin interactions. This was tested by measuring the apparent rate of Tn dissociation from rigor skeletal myofibrils using labeled Tn exchange. The location and rate of exchange of Tn or its subunits were measured by high-resolution fluorescence microscopy and image analysis. Three different rates of Tn exchange were observed that were dependent on calcium concentration and strong cross-bridge binding that strongly support the three-state model. The rate of Tn dissociation in the non-overlap region was 200-fold faster at pCa 4 (C-state region) than at pCa 9 (B-state region). When Tn contained engineered TnC mutants with weakened regulatory TnI interactions, the apparent exchange rate at pCa 4 in the non-overlap region increased proportionately with TnI-TnC regulatory affinity. This suggests that the mechanism of calcium enhancement of the rate of Tn dissociation is by favoring a TnI-TnC interaction over a TnI-actin-Tm interaction. At pCa 9, the rate of Tn dissociation in the overlap region (M-state region) was 100-fold faster than the non-overlap region (B-state region) suggesting that strong cross-bridges increase the rate of Tn dissociation. At pCa 4, the rate of Tn dissociation was twofold faster in the non-overlap region (C-state region) than the overlap region (M-state region) that likely involved a strong cross-bridge influence on TnT's interaction with actin-Tm. At sub-maximal calcium (pCa 6.2-5.8), there was a long-range influence of the strong cross-bridge on Tn to enhance its dissociation rate, tens of nanometers from the strong cross-bridge. These observations suggest that the three different states of actin-Tm are associated with three different states of Tn. They also support a model in which strong cross-bridges shift the regulatory equilibrium from a TnI-actin-Tm interaction to a TnC-TnI interaction that likely enhances calcium binding by TnC.  相似文献   

15.
16.
A protein was isolated from a human erythrocyte lysate with an apparent molecular weight of 23,000–24,000 daltons. This protein was purified by batch DEAE cellulose followed by column DEAE cellulose chromatography and a gradient of NaCl. On sodium dodecyl sulfate acrylamide electrophoresis, the erythrocyte protein comigrated with muscle troponin inhibitor. An isoelectric precipitation (pH 9.25) was used for the separation of muscle troponin inhibitor from a complex with another troponin component. Both the erythrocyte protein and the muscle troponin inhibitor partially inhibited muscle myosin Ca2+ and K+-EDTA ATPase activity. Furthermore, they inhibited actin-activated Mg2+-ATPase of muscle myosin. The inhibitory effects were absent in the presence of muscle troponin calcium-binding component. Muscle troponin inhibitor and the erythrocyte troponin inhibitor-like protein bound to muscle myosin when myosin was precipitated twice at low ionic strength. The presence of a troponin inhibitor-like protein in erythrocytes suggests that it may be a component in the regulation of contractile activity.  相似文献   

17.
18.
The solution secondary structure of calcium-saturated skeletal troponin C (TnC) in the presence of 15% (v/v) trifluoroethanol (TFE), which has been shown to exist predominantly as a monomer (Slupsky CM, Kay CM, Reinach FC, Smillie LB, Sykes BD, 1995, Biochemistry 34, forthcoming), has been investigated using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The 1H, 15N, and 13C NMR chemical shift values for TnC in the presence of TFE are very similar to values obtained for calcium-saturated NTnC (residues 1-90 of skeletal TnC), calmodulin, and synthetic peptide homodimers. Moreover, the secondary structure elements of TnC are virtually identical to those obtained for calcium-saturated NTnC, calmodulin, and the synthetic peptide homodimers, suggesting that 15% (v/v) TFE minimally perturbs the secondary and tertiary structure of this stably folded protein. Comparison of the solution structure of calcium-saturated TnC with the X-ray crystal structure of half-saturated TnC reveals differences in the phi/psi angles of residue Glu 41 and in the linker between the two domains. Glu 41 has irregular phi/psi angles in the crystal structure, producing a kink in the B helix, whereas in calcium-saturated TnC, Glu 41 has helical phi/psi angles, resulting in a straight B helix. The linker between the N and C domains of calcium-saturated TnC is flexible in the solution structure.  相似文献   

19.
人心肌肌钙蛋白T的纯化和单克隆抗体的制备   总被引:5,自引:0,他引:5  
从人左室心肌中成功纯化心肌肌钙蛋白T(cTnT). 经匀浆, 70℃加热处理, 咪唑盐酸透析, DEAE-纤维素层析, 100g心肌获取cTnT 5mg, 纯度为97.6%. 同时采用脾内免疫法, 免疫Balb/C小鼠, 经细胞融合, 筛选, 克隆化得5株稳定分泌抗人cTnT单克隆抗体(McAb)的杂交瘤细胞(G3, G8, G10, A5, A7), 4株为IgM, 1株为IgG, 染色体数目92~110条. 腹水效价为3.2×10-6~1. 6×10-7.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号