首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Ozone Quenching Properties of Isoprene and Its Antioxidant Role in Leaves   总被引:24,自引:0,他引:24  
Isoprene is formed in and emitted by plants and the reason for this apparent carbon waste is still unclear. It has been proposed that isoprene stabilizes cell and particularly chloroplast thylakoid membranes. We tested if membrane stabilization or isoprene reactivity with ozone induces protection against acute ozone exposures. The reduction of visible, physiological, anatomical, and ultrastructural (chloroplast) damage shows that clones of plants sensitive to ozone and unable to emit isoprene become resistant to acute and short exposure to ozone if they are fumigated with exogenous isoprene, and that isoprene-emitting plants that are sensitive to ozone do not suffer damage when exposed to ozone. Isoprene-induced ozone resistance is associated with the maintenance of photochemical efficiency and with a low energy dissipation, as indicated by fluorescence quenching. This suggests that isoprene effectively stabilizes thylakoid membranes. However, when isoprene reacts with ozone within the leaves or in a humid atmosphere, it quenches the ozone concentration to levels that are less or non-toxic for plants. Thus, protection from ozone in plants fumigated with isoprene may be due to a direct ozone quenching rather than to an induced resistance at membrane level. Irrespective of the mechanism, isoprene is one of the most effective antioxidants in plants.  相似文献   

2.
3.
Isoprene reduces visible damage (necrosis) of leaves caused by exposure to ozone but the mechanism is not known. Here we show that in Phragmites leaves isoprene emission was stimulated after a 3-h exposure to high ozone levels. The photosynthetic apparatus of leaves in which isoprene emission was inhibited by fosmidomycin became more susceptible to damage by ozone than in isoprene-emitting leaves. Three days after ozone fumigation, the necrotic leaf area was significantly higher in isoprene-inhibited leaves than in isoprene-emitting leaves. Isoprene-inhibited leaves also accumulated high amounts of nitric oxide (NO), as detected by epifluorescence light microscopy. Our results confirm that oxidative stresses activate biosynthesis and emission of chloroplastic isoprenoid, bringing further evidence in support of an antioxidant role for these compounds. It is suggested that, in nature, the simultaneous quenching of NO and reactive oxygen species by isoprene may be a very effective mechanism to control dangerous compounds formed under abiotic stress conditions, while simultaneously attenuating the induction of the hypersensitive response leading to cellular damage and death.  相似文献   

4.
Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis. Temporal patterns of ROS following a 6 h exposure to 300 nL L(-1) of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Down-regulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death.  相似文献   

5.
6.
The alternative oxidase (AOX) of plant mitochondria transfers electrons from the ubiquinione pool to oxygen without energy conservation and prevents the formation of reactive oxygen species (ROS) when the ubiquinone pool is over-reduced. Thus, AOX may be involved in plant acclimation to a number of oxidative stresses. To test this hypothesis, we exposed wild-type (WT) Xanthi tobacco plants as well as Xanthi plants transformed with the Bright Yellow tobacco AOX1a cDNA with enhanced (SN21 and SN29), and decreased (SN10) AOX capacity to an acute ozone (O3) fumigation. As a result of 5 h of O3 exposition (250 nL L(-1)), SN21 and SN29 plants surprisingly showed localized leaf damage, whereas SN10, similarly to WT plants, was undamaged. In keeping with this observation, WT and SN21 plants differed in their response to O3)for the expression profiles of catalase 1 (CAT1), catalase 2 (CAT2), glutathione peroxidase (GPX) and ascorbate peroxidase (APX) genes, and for the activity of these antioxidant enzymes, which were induced in WT. Concomitantly, although ozone induced H2O2 accumulation in WT and in all transgenic lines, only in transgenics with high AOX capacity the H2O2 level in the post-fumigation period was high. The alternative pathway of WT plants was strongly stimulated by O3, whereas in SN21 plants, the respiratory capacity was always high across the treatment. The present results show that, far from exerting a protective role, the overexpression of AOX triggers an increased O3 sensitivity in tobacco plants. We hypothesize that the AOX overexpression results in a decrease of mitochondrial ROS level that in turn alters the defensive mitochondrial to nucleus signalling pathway that activates ROS scavenging systems.  相似文献   

7.
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.  相似文献   

8.
Ozone stimulates apoplastic antioxidant systems in pumpkin leaves   总被引:5,自引:0,他引:5  
The phytotoxiticky of ozone is due to its high oxidant capacity and to its ability to generate toxic molecular species. It is well known that intracellular peroxidases play an important role in eliminating toxic forms of oxygen but little evidence has been reported on the role of peroxidases in the apoplastic compartment. The detoxification systems located in the foliar extracellular matrix and in the intracellular fluid of sensitive pumpkin plants ( Cucurbita pepo L. cv. Ambassador) exposed to ozone (150 ppb. 5 days. 5 h day-1) in a fumigation chamber, were analyzed. The analyses were carried out on both young and mature leaves. Ascorbate peroxidase (EC 1.11.1.11) was found in the extracellular matrix of the pumpkin tissues. Its activity increased in both young and mature leaves as a consequence of the treatment, while at intraeellular levels its effect was most prominent in mature leaves. Analysis of the ascorbie-dehydroascorbic acid system revealed an enhancement of the pool content in the extracellular matrix of both kinds of leaves as a consequence of fumigation, while at the intracelluiar level small variations were found. Very little variation was observed in the glutathione pool as a consequence of fumigation. The analysis of a lipid peroxidation marker, malondi-aldehyde. showed the significant effect of ozone on membrane lipids. Following fumigation, the free phenols in the extracellular matrix decreased in both young and mature leaves, while the free and glycoside-bound phenols of the intracellular fluid showed little increase. The results support the hypothesis that ozone stimulates the an-tioxidant systems mainly in the apoplast and that ascorbic peroxidase activity, ascorbic acid levels and cell wall stiffening are the most influenced parameters.  相似文献   

9.
One of the primary plant mechanisms protecting leaf cells against enhanced atmospheric ozone is the accumulation of polyamines, generally observed as an increase in putrescine level, and in particular its bound form to thylakoid membranes. Ozone-sensitive plants of tobacco (cultivar Bel W3) in contrast to ozone-tolerant Bel B, are not able to increase their endogenous thylakoid membrane-bound putrescine when they are exposed to an atmosphere with enhanced ozone concentration, resulting in reduction of their photosynthetic rates and consequently reduction in plant biomass formation. In comparison to the tolerant cultivar Bel B, a prolongation of ozone exposure thus can lead to typical visible symptoms (necrotic spots) in leaves of the sensitive plant. Exogenously manipulated increase of the cellular putrescine levels of the ozone-sensitive Bel W3 is sufficient to revert these effects, whereas a reduction in endogenous putrescine levels of the tolerant cultivar Bel B renders them sensitive to ozone treatment. The results of this work reveal a regulator role for polyamines in adaptation of the photosynthetic apparatus and consequently to its protection in an environment polluted by ozone.  相似文献   

10.
Isoprene emission from plants: why and how   总被引:4,自引:0,他引:4  
BACKGROUND: Some, but not all, plants emit isoprene. Emission of the related monoterpenes is more universal among plants, but the amount of isoprene emitted from plants dominates the biosphere-atmosphere hydrocarbon exchange. SCOPE: The emission of isoprene from plants affects atmospheric chemistry. Isoprene reacts very rapidly with hydroxyl radicals in the atmosphere making hydroperoxides that can enhance ozone formation. Aerosol formation in the atmosphere may also be influenced by biogenic isoprene. Plants that emit isoprene are better able to tolerate sunlight-induced rapid heating of leaves (heat flecks). They also tolerate ozone and other reactive oxygen species better than non-emitting plants. Expression of the isoprene synthase gene can account for control of isoprene emission capacity as leaves expand. The emission capacity of fully expanded leaves varies through the season but the biochemical control of capacity of mature leaves appears to be at several different points in isoprene metabolism. CONCLUSIONS: The capacity for isoprene emission evolved many times in plants, probably as a mechanism for coping with heat flecks. It also confers tolerance of reactive oxygen species. It is an example of isoprenoids enhancing membrane function, although the mechanism is likely to be different from that of sterols. Understanding the regulation of isoprene emission is advancing rapidly now that the pathway that provides the substrate is known.  相似文献   

11.
The role that the constituents of the ascorbate–glutathione cycle play in the mechanism of contrasting ozone sensitivities was examined in mature and old tobacco leaves after acute ozone-fumigation (150 p.p.b., 5 h). Levels of the enzyme activities associated with the detoxifying system were lower in ozone-sensitive Bel W3 control plants than in unfumigated ozone-tolerant Bel B plants. In particular, the endogenous activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the metabolites ascorbic acid (AA) and reduced glutathione (GSH) were more abundant in Bel B than Bel W3 control plants. These results suggest that the higher tolerance of Bel B to O3 is associated with a greater initial content of the antioxidant enzymes or metabolites. Only in the mature leaves of the ozone-tolerant Bel B cv. did fumigation trigger activation of APX and, weakly, of dehydroascorbate reductase (DHAR). The activity of these enzymes was significantly lower after ozone treatment in both mature and old leaves of Bel W3 than in control plants. Fumigation had little effect on the ascorbate content. Its main effects on the glutathione pool were that it boosted the oxidized form and lowered the reduced form, particularly in mature Bel W3 leaves. Extractable GR activity remained unchanged in both Bel B and Bel W3 immediately after fumigation, but increased slightly 24 h later, particularly in mature leaves of Bel W3. Exposure to O3 caused a sharp decline in chloroplastic GR mRNA levels in both cultivars. However, as Western blot analysis failed to detect any major changes in GR protein content at this time, the protein must be highly stable. There is therefore a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as AA and GSH in tobacco. In addition, the degree of inducibility of the system discriminates the two cultivars investigated.  相似文献   

12.
Condensed lignins are synthesized in poplar leaves exposed to ozone   总被引:10,自引:0,他引:10       下载免费PDF全文
Poplar (Populus tremula x alba) trees (clone INRA 717-1-B4) were cultivated for 1 month in phytotronic chambers with two different levels of ozone (60 and 120 nL L(-1)). Foliar activities of shikimate dehydrogenase (EC 1.1.1.25), phenylalanine ammonia lyase (EC 4.3.1.5), and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) were compared with control levels. In addition, we examined lignin content and structure in control and ozone-fumigated leaves. Under ozone exposure, CAD activity and CAD RNA levels were found to be rapidly and strongly increased whatever the foliar developmental stage. In contrast, shikimate dehydrogenase and phenylalanine ammonia lyase activities were increased in old and midaged leaves but not in the youngest ones. The increased activities of these enzymes involved in the late or early steps of the metabolic pathway leading to lignins were associated with a higher Klason lignin content in extract-free leaves. In addition, stress lignins synthesized in response to ozone displayed a distinct structure, relative to constitutive lignins. They were found substantially enriched in carbon-carbon interunit bonds and in p-hydroxyphenylpropane units, which is reminiscent of lignins formed at early developmental stages, in compression wood, or in response to fungal elicitor. The highest changes in lignification and in enzyme activities were obtained with the highest ozone dose (120 nL L(-1)). These results suggest that ozone-induced lignins might contribute to the poplar tolerance to ozone because of their barrier or antioxidant effect toward reactive oxygen species.  相似文献   

13.
Thermotolerance induced by isoprene has been assessed during heat bursts but there is little information on the ability of endogenous isoprene to confer thermotolerance under naturally elevated temperature, on the interaction between isoprene-induced thermotolerance and light stress, and on the persistence of this protection in leaves recovering at lower temperatures. Moderately high temperature treatment (38 °C for 1.5 h) reduced photosynthesis, stomatal conductance, and photochemical efficiency of photosystem II in isoprene-emitting, but to a significantly lower extent than in isoprene-inhibited Phragmites australis leaves. Isoprene inhibition and high temperature independently, as well as together, induced lipid peroxidation, increased level of H2O2, and increased catalase and peroxidase activities. However, leaves in which isoprene emission was previously inhibited developed stronger oxidative stress under high temperature with respect to isoprene-emitting leaves. The heaviest photosynthetic stress was observed in isoprene-inhibited leaves exposed to the brightest illumination (1500 µmol m−2 s−1) and, in general, there was also a clear additive effect of light excess on the formation of reactive oxygen species, antioxidant enzymes, and membrane damage. The increased thermotolerance capability of isoprene-emitting leaves may be due to isoprene ability to stabilize membranes or to scavenge reactive oxygen species. Irrespective of the mechanism by which isoprene reduces thermal stress, isoprene-emitting leaves are able to quickly recover after the stress. This may be an important feature for plants coping with frequent and transient temperature changes in nature.  相似文献   

14.
Abstract. In experiments where mung beans ( Vigna radiata L.) and peas ( Pisum sativum L.) have been pre-exposed to ethylene and afterwards treated with ozone, it has been shown that such ethylenepretreated plants may become more resistant to ozone. Further experiments with hydrogen peroxide (H2O2) and the herbicide paraquat suggest that this increased resistance against ozone depends on the stimulation of ascorbate peroxidase activity which provides cells with increased resistance against the formation of H2O2 which is also formed when plants are fumigated with ozone. These results explain why increased production of ethylene can be observed in plants exposed with ozone or other oxidative stress and clearly demonstrate that in plants, as well as animals, peroxidases protect cells against harmful concentrations of hydroperoxides.  相似文献   

15.
The possible protective role of endogenous isoprene against oxidative stress caused by singlet oxygen (1O2) was studied in the isoprene‐emitting plant Phragmites australis. Leaves emitting isoprene and leaves in which isoprene synthesis was inhibited by fosmidomycin were exposed to increasing concentrations of 1O2 generated by Rose Bengal (RB) sensitizer at different light intensities. In isoprene‐emitting leaves, photosynthesis and H2O2 and malonyldialdehyde (MDA) contents were not affected by low to moderate 1O2 concentrations generated at light intensities of 800 and 1240 µmol m?2 s?1, but symptoms of damage and reactive oxygen accumulation started to be observed when high levels of 1O2 were generated by very high light intensity (1810 µmol m?2 s?1). A dramatic decrease in photosynthetic performance and an increase in H2O2 and MDA levels were measured in isoprene‐inhibited RB‐fed leaves, but photosynthesis was not significantly inhibited in leaves in which the isoprene leaf pool was reconstituted by fumigating exogenous isoprene. The inhibition of photosynthesis in isoprene‐inhibited leaves was linearly associated with the light intensity and with the consequently formed 1O2. Hence, physiological levels of endogenous isoprene may supply protection against 1O2. The protection mechanisms may involve a direct reaction of isoprene with 1O2. Moreover, as it is a small lipophilic molecule, it may assist hydrophobic interactions in membranes, resulting in their stabilization. The isoprene‐conjugated double bond structure may also quench 1O2 by facilitating energy transfer and heat dissipation. This action is typical of other isoprenoids, but we speculate that isoprene may provide a more dynamic protection mechanism as it is synthesized promptly when high light intensity produces 1O2.  相似文献   

16.
17.
General Metabolic Changes in Leaf Lipids in Response to Ozone   总被引:1,自引:0,他引:1  
Of eight species of higher plants examined, lettuce was themost resistant to ozone. Lettuce leaves showed no visible changeswhile in other species visible injuries were apparent afterplants had been exposed to 0.5 µl liter–1 ozonein the light for 6 h and then kept in the light for a further20 h. Analysis of leaf lipids immediately after 4–6 hof treatment with ozone revealed decreases in levels of monogalactosyldiacylglycerol(MGDG) and increases in levels of triacylglycerol (TG) in allplants including lettuce, but the extent of the changes variedamong the plant species. The fatty acids esterified to TG inozone-treated leaves were mainly  相似文献   

18.
In this study the response to photoinhibition of photosynthesis and subsequent recovery was examined in plants of Phaseolus vulgaris L. cultivar ‘Pinto’ exposed to charcoal-filtered air or to ozone (O3) at 150 nL L−1 either for 3 h, or for 5 h. The responses were analysed using chlorophyll fluorescence imaging and by conventional fluorometry. Compared to control plants maintained in charcoal-filtered air, in plants exposed for 3 h to O3 and then subjected to high light treatment, the results show an increased tolerance to photoinhibition. Plants exposed to the same O3 concentration but for the longer 5-h period, were not tolerant to the photoinhibition treatment and, instead showed visible symptoms of damage (chlorosis and necrosis) clearly attributable to the longer O3 exposure. Here the detrimental effects of O3 aggravated the effects of the high light photoinhibitory treatment. The leaves exposed to the shorter O3 treatment (150 nL L−1 for 3 h) developed an ability to counteract the negative effects of a high light exposure probably because the O3 had activated an antioxidant system able to protect the photosynthetic machinery.  相似文献   

19.
Elevated atmospheric ozone concentrations (70 ppb) reduced the sensitivity of stomatal closure to abscisic acid (ABA) in Leontodon hispidus after at least 24 h exposure (1) when detached leaves were fed ABA, and (2) when intact plants were sprayed or injected with ABA. They also reduced the sensitivity of stomatal closure to soil drying around the roots. Such effects could already be occurring under current northern hemisphere peak ambient ozone concentrations. Leaves detached from plants which had been exposed to elevated ozone concentrations generated higher concentrations of ethylene, although leaf tissue ABA concentrations were unaffected. When intact plants were pretreated with the ethylene receptor binding antagonist 1-methylcyclopropene, the stomatal response to both applied ABA and soil drying was fully restored in the presence of elevated ozone. Implications of ethylene's antagonism of the stomatal response to ABA under oxidative stress are discussed. We suggest that this may be one mechanism whereby elevated ozone induces visible injury in sensitive species. We emphasize that drought linked to climate change and tropospheric ozone pollution, are both escalating problems. Ozone will exacerbate the deleterious effects of drought on the many plant species including valuable crops that respond to this pollutant by emitting more ethylene.  相似文献   

20.
Seven day old wheat plants (Triticum aestivum L.), cv. Fredrick,were exposed to an ozone atmosphere of 0.5 ppm for a periodof 6 h. The leaves of the control plants showed typical symptomsof ozone injury, i.e. chlorosis, necrotic lesions, increasedsolute leakage and reduced Hill activity. These phytotoxic symptomswere prevented in the plants grown from seeds which had beentreated at 0.03 g.kg–1 seed with the triazole S-3307.Ozone treatment also induced a decline in phospholipid contentand a concomitant increase in the concentrations of free fattyacids. There was no evidence of fatty acid peroxidation in thatthere was no significant decrease in fatty acid unsaturationwith ozone fumigation. This supports the hypothesis that themechanism of ozone toxicity may be partially mediated througha free radical cleavage of the ester linkages between the glycerolmoiety and the fatty acid tails of phospholipids. The cleavageof phospholipids was not evident in the plants pretreated withS-3307 and it is suggested that this may be due in part to increasesin lipid soluble antioxidants found in the triazole treatedplants. (Received May 8, 1987; Accepted July 21, 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号