首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary motor and sensory neuropathy type I (HMSN I) or Charcot-Marie-Tooth (CMT) disease is an autosomal dominant peripheral neuropathy. In some CMT families linkage has been reported with either the Duffy blood group or the APOA2 gene, both located on chromosome 1q. More recently, linkage has been found in six CMT families with two chromosome 17p markers. We extensively analyzed a multi-generation Charcot-Marie-Tooth family by using molecular genetic techniques in order to localize the CMT gene defect. First, we constructed a continuous linkage group of 11 chromosome 1 markers and definitely excluded chromosome 1 as the site of mutation. Second, we analyzed the family for linkage with chromosome 17. The two-point lod scores obtained with D17S58 and D17S71 proved that this Charcot-Marie-Tooth family is linked to chromosome 17. Moreover, multipoint linkage results indicated that the mutation is most likely located on the chromosome 17p arm, distal of D17S71.  相似文献   

2.
Hereditary isolated renal magnesium loss maps to chromosome 11q23.   总被引:3,自引:0,他引:3       下载免费PDF全文
Hypomagnesemia due to isolated renal magnesium loss has previously been demonstrated in two presumably unrelated Dutch families with autosomal dominant mode of inheritance. Patients with magnesium deficiency may suffer from tetany and convulsions, but the patients with hereditary renal magnesium wasting can also be clinically nonsymptomatic. In a genomewide linkage study, we first excluded a possible candidate region, on chromosome 9q, that encompasses the gene for intestinal hypomagnesemia with secondary hypocalcemia and, subsequently, found linkage to markers on chromosome 11q23. Detailed haplotype analyses identified a common haplotype segregating in both families, suggesting both their relationship through a common ancestor and the existence of a single, hypomagnesemia-causing mutation within them. The maximum two-point LOD score (Zmax) was found for marker D11S4127 (Zmax=6.41 at a recombination fraction of. 00), whereas a multipoint analysis gave a Zmax of 8.24 between markers D11S4142 and D11S4171. Key recombination events define a 5. 6-cM region between these two markers on chromosome 11q23. We conclude that this region encompasses a gene, involved in renal magnesium handling, that is mutated in our patients and is different from the gene involved in intestinal magnesium handling.  相似文献   

3.
The reported linkage between cutaneous melanoma and the dysplastic nevus syndrome (CM/DNS) to markers located on the distal portion of the short arm of chromosome 1 was examined in three Utah kindreds ascertained for multiple cases of melanoma. Family members in these kindreds were genotyped for the two markers reported to be most closely linked in the Bale study, PND and D1S47. Both melanoma alone and a combined melanoma/DNS phenotype were analyzed; no evidence for linkage was found. By multipoint linkage analysis the CM/DNS locus was excluded from an area of 55 cM containing the PND-D1S47 region. Diagnostic or genetic heterogeneity are alternate explanations for the discrepancy between our observations and those of Bale et al.  相似文献   

4.
Apolipoprotein E (APOE) is the only confirmed susceptibility gene for late-onset Alzheimer disease (AD). In a recent genomic screen of 54 families with late-onset AD, we detected significant evidence for a second late-onset AD locus located on chromosome 12 between D12S373 and D12S390. Linkage to this region was strongest in 27 large families with at least one affected individual without an APOE-4 allele, suggesting that APOE and the chromosome 12 locus might have independent effects. We have since genotyped several additional markers across the region, to refine the linkage results. In analyzing these additional data, we have addressed the issue of heterogeneity in the data set by weighting results by clinical and neuropathologic features, sibship size, and APOE genotype. When considering all possible affected sib pairs (ASPs) per nuclear family, we obtained a peak maximum LOD score between D12S1057 and D12S1042. The magnitude and location of the maximum LOD score changed when different weighting schemes were used to control for the number of ASPs contributed by each nuclear family. Using the affected-relative-pair method implemented in GENEHUNTER-PLUS, we obtained a maximum LOD score between D12S398 and D12S1632, 25 cM from the original maximum LOD score. These results indicate that family size influences the location estimate for the chromosome 12 AD gene. The results of conditional linkage analysis by use of GENEHUNTER-PLUS indicated that evidence for linkage to chromosome 12 was stronger in families with affected individuals lacking an APOE-4 allele; much of this evidence came from families with affected individuals with neuropathologic diagnosis of dementia with Lewy bodies (DLB). Taken together, these results indicate that the chromosome 12 locus acts independently of APOE to increase the risk of late-onset familial AD and that it may be associated with the DLB variant of AD.  相似文献   

5.
Genetic linkage studies were performed in 22 families with von Hippel-Lindau (VHL) disease by using polymorphic DNA markers from distal chromosome 3p. Linkage was detected between VHL disease and the markers D3S18 (Zmax = 6.6 at theta = 0.0, confidence interval (CI) 0.00-0.06), RAF1 (Zmax = 5.9 at theta = 0.06, CI 0.01-0.16), and THRB (Zmax 3.4 at theta = 0.11). Multipoint linkage analysis localized the VHL disease gene within a small region (approximately 8 cM) of 3p25-p26 between RAF1 and (D3S191, D3S225) and close to the D3S18 locus. There was no evidence of locus heterogeneity, and families with and without pheochromocytoma showed linkage to D3S18. The identification of DNA markers flanking the VHL disease gene allows reliable presymptomatic and prenatal diagnosis to be offered to informative families.  相似文献   

6.
Significant linkage disequilibrium has been found between the Huntington disease (HD) gene and DNA markers located around D4S95 and D4S98. The linkage-disequilibrium studies favor the proximal location of the HD gene, in contrast to the conflicting results of recombination analyses. We have analyzed 45 Dutch HD families with 19 DNA markers and have calculated the strength of linkage disequilibrium. Highly significant linkage disequilibrium has been detected with D4S95, consistent with the studies in other populations. In contrast with most other studies, however, the area of linkage disequilibrium extends from D4S10 proximally to D4S95, covering 1,100 kb. These results confirm that the HD gene most likely maps near D4S95.  相似文献   

7.
Epidemiological studies have shown that genetic factors contribute to the etiology of the common and serious pregnancy-specific disorder pre-eclampsia (PE)/eclampsia (E). Candidate-gene studies have provided evidence (albeit controversial) of linkage to several genes, including angiotensinogen on 1q42-43 and eNOS on 7q36. A recent medium-density genome scan in Icelandic families identified significant linkage to D2S286 (at 94.05 cM) on chromosome 2p12 and suggestive linkage to D2S321 (at 157.5 cM) on chromosome 2q23. In the present article, the authors report the results of a medium-density genome scan in 34 families, representing 121 affected women, from Australia and New Zealand. Multipoint nonparametric linkage analysis, using the GENEHUNTER-PLUS program, showed suggestive evidence of linkage to chromosome 2 (LOD=2.58), at 144.7 cM, between D2S112 and D2S151, and to chromosome 11q23-24, between D11S925 and D11S4151 (LOD=2.02 at 121.3 cM). Given the limited precision of estimates of the map location of disease-predisposing loci for complex traits, the present finding on chromosome 2 is consistent with the finding from the Icelandic study, and it may represent evidence of the same locus segregating in the population from Australia and New Zealand. The authors propose that the PE/E-linked locus on chromosome 2p should be designated the "PREG1" (pre-eclampsia, eclampsia gene 1) locus.  相似文献   

8.
The Marfan syndrome is a common autosomal dominant disorder of connective tissue. Despite many years of intensive investigation, the primary genetic defect has not yet been identified. Reverse genetic methods, targeted at mapping this disease gene, have resulted in an initial report of linkage of the genetic locus for the Marfan phenotype in Finnish families to two polymorphic markers on chromosome 15. We have investigated four large multiplex American families with classic Marfan syndrome using standard genetic linkage methods. Our data confirm the assignment of the Marfan syndrome gene to chromosome 15, but establish a more centromeric location (defined by markers D15S25 and D15S1) as the most probable site for the genetic defect (lod score = 12.1, theta = 0.00). These data should facilitate identification and characterization of the Marfan syndrome gene and, in selected families, have immediate application to diagnosis of equivocal cases or prenatal counseling.  相似文献   

9.
We have studied the segregation of an RFLP detected with a human ETS-1 genomic probe in 25 families containing members affected with ataxia-telangiectasia (AT) and in 27 families from the Centre d'Etude du Polymorphisme Humain (CEPH) panel. We have recently mapped a gene for AT to 11q22-23 by linkage to the markers THY1 and D11S144. Multipoint linkage analysis of the CEPH families indicated that ETS-1 is located on chromosome 11q approximately 19.2 centimorgans telomeric to THY1. Analysis of the segregation of ETS-1 alleles in AT families yields strongly negative LOD scores, excluding an AT gene from a region extending 15 cM to either side of ETS-1. Multipoint mapping of ETS-1, D11S144, THY1, and AT also excludes the possibility that an AT gene is telomeric to ETS-1.  相似文献   

10.
The genetic map in the region of human chromosome 7 that harbors the gene for cystic fibrosis (CF) has been refined by multilocus linkage studies in an expanded database including a large set of normal families. Six loci known to be linked to CF were examined: MET, an oncogene; COL1A2, collagen; TCRB, T-cell-receptor beta polypeptide; and three arbitrary loci—D7S8, D7S13, and D7S16—defined by probes pJ3.11, pB79a, and p7C22, respectively. The gene order with greatest statistical support is COL1A2-D7S13-D7S16-MET-D7S8-TCRB. Linkage analysis in families segregating for CF suggested that the most likely location of the CF gene on this map is between MET and D7S8.  相似文献   

11.
Autosomal dominant retinitis pigmentosa (adRP) has shown linkage to the chromosome 3q marker C17 (D3S47) in two large adRP pedigrees known as TCDM1 and adRP3. On the basis of this evidence the rhodopsin gene, which also maps to 3q, was screened for mutations which segregated with the disease in adRP patients, and several have now been identified. However, we report that, as yet, no rhodopsin mutation has been found in the families first linked to C17. Since no highly informative marker system is available in the rhodopsin gene, it has not been possible to measure the genetic distance between rhodopsin and D3S47 accurately. We now present a linkage analysis between D3S47 and the rhodopsin locus (RHO) in five proven rhodopsin-retinitis pigmentosa (rhodopsin-RP) families, using the causative mutations as highly informative polymorphic markers. The distance, between RHO and D3S47, obtained by this analysis is theta = .12, with a lod score of 4.5. This contrast with peak lod scores between D3S47 and adRP of 6.1 at theta = .05 and 16.5 at theta = 0 in families adRP3 and TCDM1, respectively. These data would be consistent with the hypothesis that TCDM1 and ADRP3 represent a second adRP locus on chromosome 3q, closer to D3S47 than is the rhodopsin locus. This result shows that care must be taken when interpreting adRP exclusion data generated with probe C17 and that it is probably not a suitable marker for predictive genetic testing in all chromosome 3q-linked adRP families.  相似文献   

12.
We studied 25 families with von Hippel-Lindau disease (VHL) to locate VHL more precisely on chromosome 3. We found that VHL was linked to RAF1, confirming previous observations, and to two polymorphic DNA markers, D3S18 and D3S191. Multipoint linkage analysis indicated that the most likely location for VHL was in the interval between RAF1 and D3S18. D3S18 was located at 3p26. Genetic heterogeneity was not detected in this panel of von Hippel-Lindau disease families. The polymorphic markers RAF1, D3S18, and D3S191 should be useful in identifying asymptomatic gene carriers in VHL families and in guiding efforts at gene isolation.  相似文献   

13.
Frequent loss of heterogeneity in prostate cancer cells and linkage studies of families affected by hereditary prostate cancer (HPC) have implied that the short arm of chromosome 8, specifically 8p22-23, may harbor a prostate-cancer-susceptibility gene. In a recent study, seven potentially important mutations in the macrophage scavenger receptor 1 gene (MSR1), located at 8p22, were observed in families affected with HPC, and an indication of co-segregation between these mutations and prostate cancer was reported. In an attempt to confirm linkage at 8p22-23, we performed linkage analyses in 57 families affected with HPC (ascertained throughout Sweden) by using 13 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was observed at 8p22-23, with a peak hold of 1.08 (P=0.03), observed at D8S1731, approximately 1 cM centromeric to the MSR1 gene. At marker D8S1135, the closest marker to MSR1, a hlod of 1.07 (P=0.03) was observed. Evidence of linkage was seen in families with early-onset HPC and in families with a small number of affected individuals. The peak multipoint non-parametric linkage score was 2.01 (P=0.03) at D8S552 in the 14 pedigrees with mean age at onset <65 years, and 2.25 (P=0.01) at D8S1731 in the 36 pedigrees with fewer than five affected family members. Thus, we have confirmed evidence for prostate cancer linkage at 8p22-23. Follow-up studies to evaluate the possible association between prostate cancer and genes in this region, especially the MSR1 gene, are warranted.  相似文献   

14.
Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by an early-onset nonprogressive chorea. The early onset and the benign course distinguishes BHC from the more common Huntington disease (HD). Previous studies on families with BHC have shown that BHC and HD are not allelic. We studied a large Dutch kindred with BHC and obtained strong evidence for linkage between the disorder and markers on chromosome 14q (maximum LOD score 6.32 at recombination fraction 0). The BHC locus in this family was located between markers D14S49 and D14S1064, a region spanning approximately 20.6 cM that contains several interesting candidate genes involved in the development and/or maintenance of the CNS: glia maturation factor-beta, GTP cyclohydrolase 1 and the survival of motor neurons (SMN)-interacting protein 1. The mapping of the BHC locus to 14q is a first step toward identification of the gene involved, which might, subsequently, shed light on the pathogenesis of this and other choreatic disorders.  相似文献   

15.
The gene for von Recklinghausen neurofibromatosis type 1 (NF1) has recently been mapped to the pericentromeric region of human chromosome 17. To further localize the NF1 gene, linkage analysis using chromosome 17 DNA markers was performed on 11 multigeneration families with 175 individuals, 57 of whom were affected. The markers used were D17Z1 (p17H8), D17S58 (EW301), D17S54 (EW203), D17S57 (EW206), D17S73 (EW207), CRI-L946, HOX-2, and growth hormone. Tight linkage was found between NF1 and D17Z1, D17S58, and D17S57 with a recombination fraction of zero. One recombinant was detected between NF1 and D17S73, showing linkage with a 10% recombination fraction. No linkage was detected between NF1 and CRI-L946 or between HOX-2 and growth hormone. Our data are consistent with the proposed gene order pter D17S58-D17Z1-NF1-D17S57-D17S73 qter.  相似文献   

16.
We earlier reported significant evidence for linkage on chromosome 15q15 in periodic catatonia, a sub-phenotype of schizophrenic psychoses. The disorder is characterized by qualitative hyperkinetic and akinetic psychomotor disturbances through acute psychotic episodes and debilitating symptoms in the long term, with psychomotor weakness, grimacing facial movements and apathy. Here, we confirm mapping of a major gene locus on chromosome 15q15 in a second genome scan in a new set of four multiplex families. Non-parametric multipoint linkage analyses identified a broad region with a maximum peak of Z(all) =3.91 ( P=0.006) and Z(lr) =3.04 at D15S1234 ( P=0.001), satisfying conventional criteria for confirmed linkage. Parametric affected-only analyses under an autosomal dominant model gave a maximum HLOD score of 1.65 (D15S1234) with an estimated 47% of families being linked. Analysis of individual families showed that one large family showed linkage, whereas two others could be clearly excluded, confirming genetic heterogeneity. No other locus reached suggestive levels of significance. Haplotype analysis on chromosome 15 in this and previously linked families placed the susceptibility region to a 11-cM interval between marker D15S1042 and D15S659. Periodic catatonia is the first sub-phenotype of schizophrenic psychoses with confirmed linkage despite the existence of considerable genetic heterogeneity.  相似文献   

17.
Recent localization of the gene for von Recklinghausen neurofibromatosis (NF1) to chromosome 17 has led to studies to identify additional tightly linked probes that can be used in defining the primary genetic defect in NF1. We have examined and obtained blood for DNA linkage studies on over 250 individuals from 10 multigeneration neurofibromatosis families. We have analyzed 130 members in 7 families with the available chromosome 17 NF1 linked probes, pE51, D17S71, and D17Z1, as well as two probes generated from our own chromosome 17/19 enriched library (LDR92, LDR152A). Tight linkage was found between NF1 and the centromeric probe D17Z1 (theta = 0.04) and between NF1 and D17S71 (theta = 0.08). A definite recombinant was seen for the D17Z1 marker, which previously had not exhibited crossingover. Chromosome 17 DNA markers pE51, LDR92, and LDR152A gave slightly positive scores, which were not statistically significant.  相似文献   

18.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction theta of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

19.
Congenital chloride diarrhea is a recessively inherited intestinal disorder affecting electrolyte transportation. The clinical presentation is a life-threatening watery diarrhea with a high chloride content. Recently, the congenital chloride diarrhea gene (CLD) was assigned to chromosome 7 by linkage in eight Finnish families. In the present study, refined mapping of CLD was performed by studying linkage and linkage disequilibrium in 24 Finnish and 4 Swedish families. Recombination mapping assigned CLD to an approximately 10-cM region flanked by D7S515 and D7S799. Linkage disequilibrium was detected over this large genetic region, with the strongest allelic association at D7S496. Application of the Luria and Delbrück-derived analysis allowed for a further narrowing of the CLD region to approximately 0.37 cM from the marker D7S496. Haplotype analysis placed CLD unequivocally between D7S501 and D7S692, very close to D7S496 and most likely on the distal side of D7S496. This combined analytical approach allowed highly accurate mapping of CLD, each component adding complementary and consistent mapping information.  相似文献   

20.
We have detected a polymorphism in the 3' untranslated region of the AML1 gene, which is located at the breakpoint on chromosome 21 in the t(8;21)(q22;q22.3) translocation often associated with patients with acute myeloid leukemia. Informative CEPH families were genotyped for this polymorphism and used to localize the gene on the linkage map of human chromosome 21. The AML1 gene is located between the markers D21S216 and D21S211, in chromosomal band 21q22.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号