首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of wind on spiral grain formation in conifer trees   总被引:1,自引:0,他引:1  
The correlation between spiral grain formation and crown asymmetry was investigated in 18 Scots pine (Pinus sylvestris L.) and 17 Norway spruce [Picea abies (L.) Karst.] trees selected from clones of each species growing in the south of Sweden. The angle between the longitudinal direction of the tracheids in the outermost year ring compared to the longitudinal direction of the stem was measured by scribing lines which followed the direction of the tracheids. The crown asymmetry was measured by taking photographs of the trees followed by a simple picture analysis of the tree. Wind data for the growing seasons of 1997 and 1998 were obtained from the Swedish Meteorological and Hydrological Institute. The results showed a significant correlation between the angle of the tracheids compared to the stem longitudinal direction going from a left-handed angle if the trees had a crown projected to the north towards a right-handed angle the more the crown projects to the south. Received: 6 September 1999 / Accepted: 20 January 2000  相似文献   

2.
Summary Through spiral grain, conduits for sap lead from each root to all branches. This uniform distribution of sap is indicated by the paths of vessels and tracheids, and has been proven experimentally by means of dyed sap injected into the base of stems or taken up by roots. Trees receiving water only from roots at one side of the root collar nevertheless stay green and continue growing. Spiral grain in bark distributes food from each branch to other flanks of the stem and to most roots. Experimental interruptions of the sap and food conduits caused the cambial zone to reorient new conduit cells in new directions, bypassing the interruption. In particular, spiral grooves cut into the stem surface caused spiral grain. The new cells reorient through division and growth. Although spiral grain is largely under genetic control, trees appear to have a spiral grain especially where needed for distribution of water when root spheres are dry at one side. Compared with straight-grained trees, spiral-grained stems and branches bend and twist more when exposed to strong wind, in this way offering less wind resistance and being less likely to break. Through the bending and twisting, snow slides down from branches rather than breaking them, but the main function of spiral grain is the uniform distribution of supplies from each root to all branches, and from each branch to many roots.  相似文献   

3.
丛栽茶树树冠小气候及其对新梢生育和生化成分的影响   总被引:3,自引:0,他引:3  
1 引言 为了获得优质高产的茶叶,需通过修剪养蓬等方法,使茶树形成宽广而整齐的树冠。丛栽茶树的树冠多呈馒头形,由于方位不同,形成了树冠内光、温、湿、风等因子的差异,因而影响了茶树的物候期及生理生化变化。因此,探讨树冠小气候特征及其对茶树新梢生育和生化成分的影响,在理论和生产实践上均有意义。有关这方面研究已有一些报道,但对茶树树冠小气候特征及其茶树新梢生育和品质成分的影响尚未见报  相似文献   

4.
Light foraging by trees is a fundamental process shaping forest communities. In heterogeneous light environments this behavior is expressed as plasticity of tree growth and the development of structural asymmetries. We studied the relative influence of neighborhood structure and directional solar radiation on horizontal asymmetry of tree crowns in late‐successional high latitude (67–68°N) forests in northern Fennoscandia. We described crown asymmetries as crown vectors (i.e. horizontal vectors from stem center to crown center), which we obtained from canopy maps based on crown perimeter measurements in the field. To disentangle the influence of the two main determinants, inter‐tree competition and directionality of above‐canopy solar radiation at high latitudes, we applied circular statistical models, utilizing cylindrical distributions, to these data consisting of orientations and intensities of crown asymmetry. At the individual tree level, our model predicted crown asymmetry vectors from the current stand structure, and the predictions became better when the intensity of asymmetry (i.e. crown vector length) was higher. Competition was the main determinant of crown asymmetry for 2/3 of trees, and the model predictions improved when we incorporated the directionality of solar radiation. At the stand‐level, these asymmetries had resulted in a small increment of the projected canopy area and an increased regularity of spatial structure. Our circular statistical modelling approach provided a quantitative evaluation of the relative importance of directionality of solar radiation and neighborhood stand structure, showing how both of these factors play a role in formation of crown asymmetries in high latitude forests. This approach further demonstrated the applicability of circular statistical modeling in ecological studies where the response variable has both orientation and intensity.  相似文献   

5.
Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.  相似文献   

6.
Capsule Birds preferred stands with a particular density of trees, perhaps to avoid predation, and they selected aspects sheltered from prevailing winds.

Aim To describe the nesting habitat and tree selection by crossbills in a restricted pinewood habitat in Scotland.

Methods Scots Pines used by nesting crossbills were described and compared with randomly selected pines. Nest aspect was related to wind strength and direction.

Results The crossbills selected trees at a density of 50–60 trees/ha. Such stands may be sufficiently dense to provide cover, yet occur at a low enough density to minimize being visited by potential arboreal predators, such as Red Squirrels and Pine Martens. Crossbills tended to nest on lateral branches on the northeast side of crowns. Tree crown development was not asymmetric, so the birds may choose the northeast side to shelter from the prevailing southerly to westerly winds.

Conclusion Stands of pines at a low density need to be maintained for the benefit of crossbills.  相似文献   

7.
Six hundred and eleven Great Basin bristlecone pines (Pinus longaeva) were surveyed in two separate groves in California’s White Mountains. The presence and direction of spiral grain were recorded for each tree as well as elevation above sea level, horizon angles, latitude and longitude, trunk diameter, whether the tree was dead, and whether the trunk was broken. The proportions of left-handed, right-handed and straight trees were similar in every part of both groves, although the groves lie at different elevations. No significant correlation was found between the direction of spiral grain and any environmental factor. The hypothesis that spiral grain is an adaptation to distribute sap evenly between the roots and the crown in Pinus longaeva is not strongly supported, since spiral grain is not correlated with asymmetric environments and most trees exhibit <90° rotation through the main stem. The data also do not support the idea that spiral grain makes the tree more resistant to breaking in strong winds. Right-handed spiral grain is predicted by this hypothesis, but most bristlecone pines are either left-handed or exhibit no spiral grain. Bristlecone pines are often uprooted from thin soils by strong winds, but rarely are the main stems broken by this mechanism. Spiral grain in Pinus longaeva growing in California’s White Mountains does not appear to be under environmental control.  相似文献   

8.
 In order to determine if different types of wood were being laid down in the root system of Maritime pine (Pinus pinaster Ait), in response to wind loading, longitudinal residual maturation strains (LRMS), indicating the existence of mechanical stress in developing wood cells, were measured in the trunk and lateral roots. Two age groups of trees (5- and 13-year- old) were compared. LRMS were greater in the trunk and roots of 13-year-old trees than in 5-year-old trees. This phenomenon may be due to increased competition between older trees. LRMS in leeward roots of both age-groups were positive i.e. the wood cells had developed under compression, as also occurs in reaction wood of gymnosperms. As leeward roots are placed under compression during tree sway, an abnormal type of wood may form in the roots in order to counteract the increased stress. In other roots, the strains were negative i.e. the cells had developed under tension, as occurs in normal wood. In the roots of younger trees, LRMS were also positive nearer the stem, thus indicating that wood formation may also be influenced by bending stresses experienced in this zone. In addition to LRMS measurements, radial growth in roots was examined in order to determine the influence of mechanical loading on secondary growth. In older trees, there was a significant increase of 34% in woody growth below the biological centre, compared to that above. This eccentricity is unlike that found in most other tree species, where secondary growth is usually greater on the upper side of the root. However, Maritime pine has a tap root, which will alter the pattern of stress within the root system. Under wind loading, a concentration of mechanical stress will develop at the bases of the stem, lateral roots and tap root. Received: 7 July 1997 / Accepted: 11 December 1997  相似文献   

9.
This paper reports on the effect of wind loading below damaging strength on tree mechanical and physical properties. In a wind-exposed Sitka spruce stand in western Scotland, 60 trees at four different levels of wind exposure (10 m, 30 m, 50 m, 90 m from edge) were characterized for stem and crown size and shape and mechanical properties, including structural Young's modulus (E(struct)), natural frequency, and damping ratio. E(struct) increased from the stand edge to the mid-forest, but with a large inter-tree variation. Swaying frequency and damping ratio of the trees also increased with distance from edge. Wind-exposed edge trees grew shorter, but more tapered with an overall lower E(struct), allowing for greater flexural stiffness at the stem base due to the larger diameter and for higher flexibility in the crown region of the stem. The trees at the middle of the stand compensated for their increased slenderness with a higher E(struct). Thus, for the different requirements for wind-firmness at stand edge and mid-forest, an adapted combination of tree form and mechanical properties allows the best withstanding of wind loads. The results show the requirement to understand the different strategies of trees to adapt to environmental constraints and the heterogeneity of their growth reactions in response to these strategies.  相似文献   

10.
We present a technique to measure the simultaneous sway of a group of trees and reconstruct the frequency of crown collisions and sway dynamics of individual or groups of trees. We placed a biaxial clinometer (tiltmeter) at the live crown base in each of ten neighboring 15-m-tall lodgepole pine trees in Alberta, Canada. Tree bole rotation at tiltmeter mount height was recorded during windy conditions at a rate of 10 times/s for the cluster of trees. Rotation angles were used in a bole curve calculation to estimate tree displacement in 2-dimensional (x, y) space. Collision reconstruction was done in Arc/Info by assigning asymmetrical crown area dimensions (polygons) to calculated bole displacement for each tree. Reconstruction of each time step measured any overlaps between crown polygon areas. Crown polygon overlaps estimated in this manner allowed assessment of collision frequencies, area of crown overlap during collisions, and identification of the tree(s) that a subject tree contacted. Collision statistics are only given for trees interior to the sensored cluster (n=3). For 15.0 min of data with an average wind speed of 4.5 m/s and a maximum of 10.0 m/s there was an average of 65 collisions/min for each tree, and an average collision overlap area of 24%. This frequency and depth of collisions supports the notion that wind-induced crown interaction inhibits lateral shoot extension and is an important mechanism for the development of crown asymmetry and crown shyness. Insight into dynamic tree sway behavior and crown interactions will allow estimation and cultivation of a forest stand structure that is more resistant to damage from wind. The techniques of recording multiple simultaneous bole sway and their reconstruction are applicable to a broad range of wind-forest interaction research.  相似文献   

11.
The soft zone in dentine beneath the dentino-enamel junction is thought to play an important role in tooth function, strain distribution and fracture resistance during mastication. Recently reported asymmetry in mechanical properties with tooth side may point at a basic property of tooth function. The aim of our study was to test if this asymmetry was reflected in the nano- and micromechanical properties of dentine. We investigated the mechanical properties of dentine on the buccal and lingual side of nine extracted human teeth using nano- and microindentation. Properties were analysed on the natural log scale, using maximum likelihood to estimate the parameters. Two-sided 0.05-level likelihood ratio tests were used to assess the influences of surface (buccal versus lingual) and dentine depth, measured from the DEJ in crown dentine and from the CDJ in root dentine. Results showed the well known gradual increase in mechanical properties with increasing distance from the DEJ. Coronal dentine showed higher elastic modulus and hardness on the lingual side of teeth for all measurements, while root dentine was harder on the buccal side. Due to the subtlety of these effects and the small number of teeth studied, results failed to reach statistical significance. Results suggest that dentine nano- and micromechanical properties vary with tooth side in agreement with recent literature using macroscopic methods. They also reveal that buccal-lingual ratios of hardness are in opposite directions in crown and root dentine, suggesting compensatory functions.  相似文献   

12.
沙质海岸黑松分枝格局特征及其抗风折能力分析   总被引:1,自引:0,他引:1       下载免费PDF全文
沙质海岸空间梯度上环境差异较大, 黑松(Pinus thunbergii)在长期的适应过程中树冠结构变化也很大。为揭示黑松树冠结构与环境间的适应机制, 在山东省胶南市灵山湾国家森林公园距海岸线0-50、200-250和400-450 m梯度内各设置1个样带, 记为带I、带II、带III, 采用枝构型的理论和方法, 对黑松的分枝格局进行了研究, 并采用模拟自然风法测定了黑松枝条的抗风折能力。结果表明: 1)在海岸梯度上黑松分枝格局差异较大, 随着距离海岸越来越远, 黑松各级枝的分枝长度、总体分枝率均逐渐增大, 而枝径比和逐步分枝率逐渐减小, 各级分枝角度表现为带I >带III >带II。2)带I树冠背风面与迎风面相比, 分枝长度、分枝角度、分枝数量、枝条干枯率分别是迎风面的1.62、1.38、2.65和0.59倍, 随着距离海岸越来越远, 这种不对称性逐渐减弱, 至带III树冠基本对称。3)海风是影响带I分枝角度偏转、枝条干枯和冠型不对称现象的主要原因。4)带III枝条的抗风折能力高于带I, 且两个样带模拟风速与枝条所承受的拉力之间的关系均符合逻辑斯蒂方程, 相关系数R2均达0.97以上。该研究揭示了不同海岸梯度上黑松分枝格局的形成机制及其抗风折能力, 可为沿海黑松防护林的合理经营提供科学依据。  相似文献   

13.
Size, allometry, and mechanical design were measured for trees of three canopy species in a tropical rain forest in French Guiana. Mechanical design was expressed as the safety factor, using the elastic-stability model, and the wind resistance factor, using the constant-stress model. Changes with ontogeny were described as regressions using stem diameter as the independent variable, and they were compared between species. Height, crown size, and the wind resistance factor increased with ontogeny. The safety factor decreased to a minimum and then increased continuously in thicker trees. The crown width/height ratio did not change with ontogeny. Interspecific differences in allometry and mechanical design were related to the adult stature of the species, and not to shade tolerance. The short stature species (Vouacapoua americana) was less slender (height:DBH [stem diameter at 1.3 m] ratio) and had a higher crown width/height ratio than the tall stature species (Goupia glabra and Dicorynia guianensis). Vouacapoua had a higher safety factor, but a similar wind resistance factor. The safety factors of our study species were lower than those of two temperate tree species because of a higher slenderness. Differences in safety factors between tropical and temperate trees may result from unrealistic assumptions of the elastic-stability model, and may also be related to lower light levels and-or wind rates in the tropics.  相似文献   

14.
Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.  相似文献   

15.
The deformation of tamarack, including crown deformation and tree ring asymmetry, was calibrated against the mean wind speed and direction at seven meteorological stations in Newfoundland. The indices, based on regression equations, showed that tree deformation is caused primarily by summer southwesterlies. A crown deformation ratio, D, gave a good estimate of mean windflow in complex terrain. A compression index, C, describing tree-ring asymmetry, gave a reasonably good estimate of mean wind flow over flat terrain but was unreliable for estimating wind flow over hilly terrain.  相似文献   

16.
The Tangbian Formation (K2t), the middle part of the Upper Cretaceous Guifeng Group in the Xinjiang Basin, Jiangxi Province, southeastern China is usually regarded as an aqueous sediment. However, based on our study, it is now attributed to an aeolian origin. This new interpretation is supported by considerable evidence, including purple-red, well-sorted and round-grained, medium to fine-grained pure sandstone with little suspension load such as clay, silt and mica, well-developed, thick, large-scale and high-dip tabular planar cross-beddings characterized by aeolian dune foresets, wind-ripple lamination, typical aeolian grain surface textures such as dish-shaped impact scars, crescent-shaped impact scars and frosted surfaces. Our palaeo-current reconstruction proved that the dominant prevailing winds were westerlies and the secondary prevailing winds were northeasterlies with a small amount of south–southeasterlies and north–northwesterlies. Based on the palaeogeography and the global wind belt model, the studied area was located within the westerlies and northeast trades of the northern hemisphere and possibly influenced by the south–southeast and north–northwest monsoons during the Late Cretaceous.  相似文献   

17.
The theory of tree bole and branch form   总被引:1,自引:0,他引:1  
Summary Working from the general postulate that natural selection of plant form operates so as to maximize the survival potential of a species, this paper examines the hypothesis that the mechanical support of tree foliage must approach optimality in the use of wood, i.e., that tree stems and branches will have optimal form with respect to the amount of support tissue. Mathematical models of bole and branch form are presented, based on the proposition that either wind or gravity are the primary limiting factors for tree size and shape. Predictions of trunk and branch diameter as a function of tree size were tested with dimensional measurements ofPopulus tremuloides. The individual stems were selected from close-grown stands of differing ages. For small and intermediate trees, trunk diameter is such that stems have only 1.6 times as much wood as the minimum required to keep the tree from buckling under its own weight due to elastic instability. Branch diameters are shown to be close to the minimum required to maintain the spatial position of growing branches, as well as withstand wind forces. This minimal branch cost not only reduces the load which the stem must support against elastic instability, but allows the crown to flex in high winds. The flexing, in turn, reduces the drag force exerted by the wind on the trunk. Thus, the hypothesis that the observed tree form is an optimal design cannot be rejected on the basis of these results. Additional studies are planned with respect to optimal foliage distribution.  相似文献   

18.
Background and Aims Rhizophora species of mangroves have a conspicuous system of stilt-like roots (rhizophores) that grow from the main stem and resemble flying buttresses. As such, the development of rhizophores can be predicted to be important for the effective transmission of dynamic loads from the top of the tree to the ground, especially where the substrate is unstable, as is often the case in the habitats where Rhizophora species typically grow. This study tests the hypothesis that rhizophore architecture in R. mangle co-varies with their proximity to the main stem, and with stem size and crown position.Methods The allometry and wood mechanical properties of R. mangle (red mangrove) trees growing in a mangrove basin forest within a coastal lagoon in Mexico were compared with those of coexisting, non-buttressed mangrove trees of Avicennia germinans. The anatomy of rhizophores was related to mechanical stress due to crown orientation (static load) and to prevailing winds (dynamic load) at the study site.Key Results Rhizophores buttressed between 10 and 33 % of tree height. There were significant and direct scaling relationships between the number, height and length of rhizophores vs. basal area, tree height and crown area. Wood mechanical resistance was significantly higher in the buttressed R. mangle (modulus of elasticity, MOE = 18·1 ± 2 GPa) than in A. germinans (MOE = 12·1 ± 0·5 GPa). Slenderness ratios (total height/stem diameter) were higher in R. mangle, but there were no interspecies differences in critical buckling height. When in proximity to the main stem, rhizophores had a lower length/height ratio, higher eccentricity and higher xylem/bark and pith proportions. However, there were no directional trends with regard to prevailing winds or tree leaning.Conclusions In comparison with A. germinans, a tree species with wide girth and flare at the base, R. mangle supports a thinner stem of higher mechanical resistance that is stabilized by rhizophores resembling flying buttresses. This provides a unique strategy to increase tree slenderness and height in the typically unstable substrate on which the trees grow, at a site that is subject to frequent storms.  相似文献   

19.
The coarse root systems of 24 Sitka spruce (Picea sitchensis (Bong.) Carr.) trees, from a 40-year-old plantation in west Scotland, were extracted, digitised in three dimensions, and root topology was recorded. Roots were from trees grown on a steep (ca. 30°) north-facing slope, and from an adjacent horizontal area with similar gleyed mineral soil. The prevailing wind was across-slope from the west. Analysis of below-ground parts of the trees in comparison with those above-ground revealed a positive linear relationship between coarse root volume and stem volume. Most non-directional characteristics of the root systems were similar between trees on the slope and on flat terrain. Allocation of root mass around trees was examined in relation to the slope and the prevailing wind direction. Trees on the horizontal area had more root mass in leeward sectors than other sectors, but trees on the slopes had more root mass in the windward sectors than other sectors. Centres of mass of the root systems from the horizontal part of the site were not significantly clustered in any direction, but root systems of trees on the slope had centres of mass significantly clustered across the slope in the windward direction. For trees on the slope, the mean direction of the largest sector without structural roots was 4° from north, i.e. downslope. The results are discussed in relation to soil characteristics and the biomechanical behaviour of trees on slopes.  相似文献   

20.
Orthoptera were monitored on field edge public footpaths on the east (leeward) and west (windward) side of hedgerows in Chelmsford, UK, in 2006. A total of 6 species were recorded from footpaths on the leeward side of hedgerows probably due to the shelter from the prevailing westerly winds provided by the trees and shrubs. On the windward side of hedgerows species richness and abundance of Orthoptera were reduced (only 4 species were recorded). It is suggested that shelter from the wind and the exposure to early morning sunlight for Orthoptera on the east side of hedgerows are important factors governing their occurrence on farmland. Many replicates had Environmental Stewardship (ES) scheme field margins adjacent but they did not affect Orthoptera species richness or abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号