首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies (abys) raised to (Na+,K+)-ATPase were purified by elution methods and shown to be cross-reactive with anti-gamma-globulin and the original antigen. Abys were isolated from two different antisera and the effects on (Na+,K+)-ATPase hydrolytic activity and [3H]ouabain binding were measured. The antisera fractions differed as to their maximum level of inhibition of hydrolytic activity and maximal [3H]ouabain binding, but both fractions caused inhibition of maximal [3H]ouabain binding to the same quantitative extent as inhibition of hydrolytic activity. Variable effects on the rate of [3H]ouabain binding were noted which were highly dependent on ligand conditions. During the "turnover state conditions" of the enzyme, the abys stimulated the rate of [3H]ouabain binding to the (Na+,K+)-ATPase. We conclude that effects of aby-(Na+,K+)-ATPase interaction depend upon degree of purity of aby, specificity, aby/enzyme ratios, and ligand conditions.  相似文献   

2.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

3.
Analysis of sodium-22 binding to purified sodium + potassium ion-activated adenosine triphosphatase (Na+, K+)-ATPase reveals the presence of two classes of binding sites. The higher affinity site (Kd = 0.2 mM) binds 6 to 7 nmol of sodium per mg of protein. Pretreatment of (Na+, K+)-ATPase with ouabain blocks the binding of sodium to this higher affinity site. Neither heat-denatured enzyme nor phospholipids extracted from the (Na+, K+)-ATPase contain a ouabain-inhibitable, higher affinity sodium binding site. The ouabain enzyme complex therefore appears to contain altered binding sites for cations.  相似文献   

4.
SPAI-1, a peptide isolated from porcine duodenum, has been shown to inhibit Na+,K(+)-ATPase in vitro (Araki et al. (1989) Biochem. Biophys. Res. Commun. 164, 496-502). The characteristics of ATPase inhibition by this novel peptide were examined. SPAI-1 inhibited Na+,K(+)-ATPase preparations isolated from various organs of dog or rat or from sheep kidney with similar potency. Three isoforms of rat Na+,K(+)-ATPase had similar sensitivity to inhibition by SPAI-1 although these isoforms had remarkable differences in their sensitivity to the inhibitory effect of ouabain. Ca(2+)-ATPase isolated from the sarcoplasmic reticulum of rabbit skeletal muscle was insensitive to inhibition by SPAI-1. Ouabain-insensitive Mg(2+)-ATPase activity was unaffected by low concentrations of SPAI-1, but was stimulated at high concentrations. SPAI-1 inhibited H+,K(+)-ATPase from hog stomach in concentrations similar to that required for Na+,K(+)-ATPase inhibition. These results indicate that SPAI-1 is a specific inhibitor for monovalent cation transporting ATPases.  相似文献   

5.
The effects of two lectins, wheat germ agglutinin and concanavalin A, were studied on a variety of parameters of two highly purified (Na+ + K+)-ATPases (ATP phosphohydrolase, EC 3.6.1.3), from the rectal salt gland of Squalus acanthias and from the electroplax of Electrophorus electricus. Both lectins agglutinated the rectal gland enzyme equally, but wheat germ agglutinin inhibited (Na+ + K+)-ATPase activity much more. The electroplax enzyme was only marginally agglutinated and inhibited by the lectins. Neuraminidase treatment of the rectal gland (Na+ + K+)-ATPase had no effect on germ agglutinin inhibition. The inhibition of the rectal gland (Na+ + K+)-ATPase by wheat germ agglutinin could be reversed by N,N'-diacetylchitobiose, which has a high affinity for wheat germ agglutinin. Neither ouabain inhibition nor ouabain binding to the rectal gland enzyme was affected by wheat germ agglutinin. The p-nitrophenylphosphatase activity of the rectal gland enzyme was not inhibited by wheat germ agglutinin. Na+-ATPase activity, which reflects ATP binding and phosphorylation at the substrate site was inhibited by wheat germ agglutinin and this inhibition was reversed by potassium. Evidence is cited (Pennington, J. and Hokin, L.E., in preparation) that the inhibition of the (Na+ + K+)-ATPase by wheat germ agglutinin is due to binding to the glycoprotein subunit.  相似文献   

6.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

7.
1. Digitonin treated membrane preparations purified from dog kidney lose their (Na+,K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity, but the K+-phosphatase and Na+-dependent ADP-ATP exchange activities survive and remain ouabain-sensitive. Because the enzyme preparations consist largely of pure (Na+,K+)-ATPase, these effects of digitonin must be intrinsic to the Na+ pump. 2. Concomitant with these enzymatic changes, digitonin treatment alters the sensitivity of the phosphatase and exchange activities to ouabain. 3. Attempts to measure ouabain binding by the usual centrifugation or filtration methods proved unsuccessful. A filtration method involving a double 0.01 mum filter and omitting water washes is necessary to demonstrate ouabain binding. Under these conditions, ouabain binding capacity appears to be unchanged in the presence of digitonin, but the apparent dissociation constant is doubled. 4. Ouabain binding is rendered more reversible by digitonin treatment, since washing filters with water removes a large fraction of bound ouabain without affecting the retention of exchange activity. 5. The double filter method traps essentially all of the ADP-ATP exchange activity on the filter. However, a large and somewhat variable proportion of the K+-phosphatase activity passes through the filter. Sodium dodecyl sulfate polyacrylamide gel analysis of the filtrate shows that a small amount of filtrable protein catalyzed this phosphatase activity at greatly increased turnover rates. Both subunits of the (Na+, K+)-ATPase are present in this latter protein fraction.  相似文献   

8.
Three derivatives of ouabain have been synthesized which alkylate the digitalis receptor. These derivatives were formed through reductive amination of p-nitrophenyltriazene (NPT) ethylenediamine to the periodate-oxidized rhamnose moiety of ouabain. The non-covalent binding of the ouabain derivatives (NPT-ouabain, designated I, II, and III) was followed (i) by their ability to inhibit the activity of sodium- and potassium-activated ATPase ((Na+,K+)-ATPase) purified from the electric organ of Electrophorus electricus, (ii) by the binding of [3H]NPT-ouabain I to the enzyme, and (iii) by the inhibition of [3H]ouabain binding with unlabeled NPT-ouabain I. Covalent modification of the digitalis site of (Na+,K+)-ATPase occurs after long periods of time. At pH 7.5 (25 degrees C) the best alkylating derivative, NPT-ouabain I, gives maximum covalent labeling after 6 h. Only the large polypeptide chain (Mr = 93,000) of the purified enzyme is specifically labeled with [3H]NPT-ouabain I while the glycoprotein chain (Mr = 47,000) is not significantly labeled. Labeling of a microsomal fraction of the electric organ with [3H]NPT-ouabain I gave the same type of gel pattern as that observed with the purified enzyme. [3H]NPT-ouabain I was also used to label the digitalis receptor in highly purified axonal membranes and in cardiac membranes prepared from embryonic chick heart. Although the (Na+,K+)-ATPase in both types of membranes has a low affinity for ouabain, [3H]NPT-ouabain I proved to be a very efficient affinity label for the digitalis receptor. In the complex mixture of polypeptides found in these membrane preparations, only a single polypeptide chain having a Mr = 93,000 is specifically labeled by [3H]NPT-ouabain I.  相似文献   

9.
Effects of triiodothyronine treatment on (Na+,K+)-ATPase in the brain, liver, kidney, and skeletal muscle were studied in the rat. The number of (Na+,K+)-ATPase units in the particulate fractions obtained from deoxycholate-treated homogenates was estimated from the concentration of [3H]ouabain binding sites assayed with a labeled drug-displacement method. The concentration of [3H]ouabain binding sites was highest in the brain tissue, intermediate in the kidney, and relatively low in the liver and skeletal muscle. The affinity of the binding sites for ouabain was highest in the brain, intermediate in the skeletal muscle, low in the kidney, and lowest in the liver. Triiodothyronine treatment increased the [3H]ouabain binding site concentration in the liver, kidney, and skeletal muscle but failed to affect it in the brain. Affinity of the binding sites for ouabain was unchanged by the triiodothyronine treatment in all tissues studied. These data indicate that triiodothyronine treatment of rats results in an increased tissue concentration of (Na+,K+)-ATPase in the liver, kidney, and skeletal muscle, but not in the brain. These changes do not accompany marked changes in the characteristics of the enzyme.  相似文献   

10.
Na+,K+-ATPase, the enzymatic moiety that operates as the electrogenic sodium-potassium pump of the cell plasma membrane, is inhibited by cardiac glycosides, and this specific interaction of a drug with an enzyme has been considered to be responsible for digitalis-induced vascular smooth muscle contraction. Although studies aimed at localization, isolation, and measurement of the Na+,K+-ATPase activity (or Na+, K- pump activity) indicate its presence in vascular smooth muscle sarcolemma, its characterization as the putative vasopressor receptor site for cardiac glycosides has depended on pharmacological studies of vascular response in vivo and on isolated artery contractile responses in vitro. More recently, radioligand-binding studies using [3H]ouabain have aided in the characterization of drug-enzyme interaction. Such studies indicate that in canine superior mesenteric artery (SMA), Na+,K+-ATPase is the only specific site of interaction of ouabain with resultant inhibition of the enzyme. The characteristics of [3H]ouabain binding to this site are similar to those of purified or partially purified Na+,K+-ATPase of other tissues, which suggests that if Na+,K+-ATPase inhibition is causally related to digitalis-mediated effects on vascular smooth muscle contraction, then therapeutic concentrations of cardiac glycosides could act to cause SMA vasoconstriction. The additional finding from radioligand-binding studies that Na+,K+-ATPase exists in much smaller quantities (density of sites per cell) in SMA than in either heart or kidney may have implications concerning its physiological, biochemical or pharmacological role in modulating vascular muscle tone.  相似文献   

11.
Effects of free fatty acids on parameters of (Na+,K+)-ATPase regulation related to enzyme conformation were examined. Sensitivity to inhibition by free fatty acid increased as the number of double bonds increased. Free fatty acids reduced affinity for K+ or Na+ at their regulatory sites without altering apparent K+ affinity at its high-affinity site, and increased apparent affinity for ATP. The apparent E2/E1 ratio and apparent delta H and delta S for the E1-E2 transition were reduced by fatty acid. High K+ or low temperature reduced the sensitivity of enzyme to inhibition by free fatty acid. In the presence of low K+, arachidonic acid potentiated inhibition of phosphatase activity by ethanol. Arachidonic acid alone had little effect on the rate of ouabain binding, but accelerated ouabain binding in the presence of K+. These data suggest that fatty acids alter (Na+,K+)-ATPase by preventing the univalent cation-mediated transition to E2, the K+-sensitive form of enzyme. (Na+,K+)-ATPase could potentially be influenced in vivo by free fatty acids released by phospholipases or during hypoxia, or by changes in membrane lipid saturation.  相似文献   

12.
Rubratoxin B, a lactone-containing bisanhydride metabolite of certain toxigenic molds, inhibited (Na+-K+)-stimulated ATPase activity of mouse brain microsomes in a dose-dependent manner with an estimated IC50 of 6 x 10(-6) M. Hydrolysis of ATP was linear with time and enzyme concentration, with or without rubratoxin in reaction mixtures. Altered pH and activity curves for (Na+-K+)-ATPase demonstrated comparable inhibition by rubratoxin in buffered acidic, neutral, and alkaline pH ranges. Kinetic studies of cationic-substrate activation of (Na+-K+)-ATPase indicated classical competitive inhibition for Na+ and K+. Results also showed competitive inhibition for K+ activated p-nitrophenyl phosphatase as demonstrated by altered binding site parameters without change in the catalytic velocity of dephosphorylation of the enzyme . phosphoryl complex. Noncompetitive inhibition with regards to activation by ATP and p-nitrophenyl phosphate was indicated by altered Vmax values with no change in Km values. Inhibition was partially restored by repeated washings. Preincubation with sulfhydryl agents protected the enzyme from inhibition. Cumulative inhibition studies with rubratoxin and ouabain indicated possible interaction between the two inhibitors of (Na+-K+)-ATPase. Rubratoxin appeared to exert its effects on (Na+-K+)-ATPase by interacting at Na+ and K+ sites.  相似文献   

13.
T Matsuda  J R Cooper 《Biochemistry》1983,22(9):2209-2213
Since one of the electrophysiological effects of pyrithiamin, an antimetabolite of thiamin, suggested an interference with sodium pump mechanisms, the effect of pyrithiamin on Na+,K+-ATPase was investigated. We found that whereas preincubation of the antimetabolite with nonneuronal preparations of Na+,K+-ATPase produced only minimal inhibition, the enzyme derived from brain preparations was markedly inhibited. This inhibition could be prevented by thiamin but not reversed. The kinetic study showed that pyrithiamin acts in a noncompetitive manner with respect to the activation of the enzyme by ATP, Na+, and K+. Pyrithiamin inhibited Na+-dependent phosphorylation and K+-stimulated phosphatase as well as ouabain binding, and these inhibitions were parallel with that of the overall Na+,K+-ATPase reaction. In addition, the antimetabolite caused a significant change in the turbidity of the enzyme suspension. The results suggest that pyrithiamin may induce a structural change of the enzyme complex.  相似文献   

14.
M Tamura  T T Lam  T Inagami 《Biochemistry》1988,27(12):4244-4253
In order to identify a specific endogenous Na+,K+-ATPase inhibitor which could possibly be related to salt-dependent hypertension, we looked for substances in the methanol extract of bovine whole adrenal which show all of the following properties: (i) inhibitory activity for Na+,K+-ATPase; (ii) competitive displacing activity against [3H]ouabain binding to the enzyme; (iii) inhibitory activity for 86Rb uptake into intact human erythrocytes; and (iv) cross-reactivity with sheep anti-digoxin-specific antibody. After stepwise fractionation of the methanol extract of bovine adrenal glands by chromatography on a C18 open column, a 0-15% acetonitrile fraction was fractionated by high-performance liquid chromatography on a Zorbax octadecylsilane column. One of the most active fractions in 0-15% acetonitrile was found to exhibit all of the four types of the activities. It was soluble in water and was distinct from various substances which have been known to inhibit Na+,K+-ATPase such as unsaturated free fatty acids, lysophosphatidylcholines, vanadate, dihydroxyeicosatrienoic acid, dehydroepiandrosterone sulfate, dopamine, lignan, ascorbic acid, etc. This substance was further purified by using an additional five steps of high-performance liquid chromatography with five different types of columns. Molecular mass was estimated as below 350 by fast atom bombardment mass spectroscopy and ultrafiltration. Heat treatment at 250 degrees C for 2 h and acid treatment with 6 N HCl at 115 degrees C for 21 h almost completely destroyed the inhibitory activity of the purified substance for Na+ pump activity. Additionally, alkaline treatment with 0.2 N NaOH at 23 degrees C for 2 h destroyed approximately 70% of the inhibitory activity, whereas boiling for 10 min and various enzyme digestion did not destroy the activity. The dose dependency for the four types of the activities for this substance paralleled those of ouabain, spanning 2 orders of magnitude in concentration range. The inhibitory potencies of the purified substance for Na+,K+-ATPase, Na+ pump, and ouabain binding activities were diminished with increasing K+ concentration, exhibiting a characteristic typical of cardiac glycosides. This substance had no effect on the Ca2+-ATPase activity or the Ca2+ loading rate into the vesicle prepared from skeletal muscle sarcoplasmic reticulum. These results strongly suggest that this water-soluble nonpeptidic Na+,K+-ATPase inhibitor may be a specific endogenous regulator for the ATPase.  相似文献   

15.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

16.
Antibodies against purified (Na+ + K+)ATPase from the rectal gland of Squalus acanthias, as well as against its catalytic subunit, inhibited ouabain binding by as much as 50%. However, antibodies against the glycoprotein subunit did not inhibit ouabain binding. These data suggest that binding of antibody against the catalytic subunit to the enzyme either covers the ouabain binding site or destroys its confirmation, while binding of antibody against the glycoprotein has no such effect.  相似文献   

17.
W J Ball 《Biochemistry》1986,25(22):7155-7162
The effects of a monoclonal antibody, prepared against the purified lamb kidney Na+,K+-ATPase, on the enzyme's Na+,K+-dependent ATPase activity were analyzed. This antibody, designated M10-P5-C11, is directed against the catalytic subunit of the "native" holoenzyme. It inhibits greater than 90% of the ATPase activity and acts as a noncompetitive or mixed inhibitor with respect to the ATP, Na+, and K+ dependence of enzyme activity. It inhibits the Na+- and Mg2+ATP-dependent phosphoenzyme intermediate formation. In contrast, it has no effect on K+-dependent p-nitrophenylphosphatase (pNPPase) activity, the interconversion of the phosphoenzyme intermediates, and ADP-sensitive or K+-dependent dephosphorylation. It does not alter ATP binding to the enzyme nor the covalent labeling of the enzyme at the presumed ATP site by fluorescein 5'-isothiocyanate (FITC), but it prevents the ATP-induced stimulation in the rate of cardiac glycoside [3H]ouabain binding to the Na+,K+-ATPase. M10-P5-C11 binding appears to inhibit enzyme function by blocking the transfer of the gamma-phosphoryl of ATP to the phosphorylation site after ATP binding to the enzyme has occurred. In the presence of Mg2+ATP, it also prevents the ATP-induced transmembrane conformational change that enhances cardiac glycoside binding. This uncoupling of ATP binding from its stimulation of ouabain binding and enzyme phosphorylation demonstrates the existence of an enzyme-Mg2+ATP transitional intermediate preceding the formation of the Na+-dependent ADP-sensitive phosphoenzyme intermediate. These results are also consistent with a model of the Na+,K+-ATPase active site being composed of two distinct but interacting regions, the ATP binding site and the phosphorylation site.  相似文献   

18.
The (Na+ + K+)-ATPase from dog kidney and partially purified membranes from HK dog erythrocytes were labeled with [3H]ouabain, solubilized with C12E8 and analyzed by HPLC through a TSK-GEL G3000SW column in the presence of C12E8, Mg2+, HPO4(2-) and glycerol at 20-23 degrees C. The peaks of [3H]ouabain bound to the enzyme from dog kidney and HK dog erythrocyte membranes corresponded to each other with apparent molecular weights of 470 000-490 000. In addition, these bindings of [3H]ouabain to the (Na+ + K+)-ATPase were observed to be stable at 20-23 degrees C for at least 18 h after the solubilization.  相似文献   

19.
The association and dissociation rate constants for the interaction of [3H]-ouabain with partially purified rat brain (Na+,K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in vitro were estimated from the time course of the [3H]-ouabain binding observed in the presence of Na+, Mg2+ and ATP by a polynomial approximation-curve-fitting technique. The reduction of the association rate constant by K+ was greater than its reduction of the dissociation rate constant. Thus, the affinity of Na+,K+)-ATPase for ouabain was reduced by K+. The binding-site concentration was unaffected by K+. Consistent with these findings, the addition of KCl to an incubation mixture at the time when [3H]-ouabain binding to (Na+,K+)ATPase is close to equilibrium, caused an immediate decrease in bound ouabain concentration, apparently shifting towards a new, lower equilibrium concentration. Dissociation rate constants which were estimated following the termination of the ouabain-binding reaction were different from those estimated with above methods and may not be useful in predicting the ligand effects on equilibrium of the ouabain-enzyme interaction.  相似文献   

20.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号