首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical production cell lines, specifically of Chinese Hamster Ovary cells. However, until recently, research was limited by a lack of genomic sequence information on this industrially important cell line. With the publication of the genomic sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved understanding of CHO cell physiology and for the development of the necessary tools for novel engineering strategies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook of potential applications of microRNA engineering in production cell lines.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
DREB takes the stress out of growing up   总被引:6,自引:0,他引:6  
  相似文献   

11.
The conference 'Epigenetics of Cancer,' organized by the American Association for Cancer Research, was held 17-21 October 2001 in Palm Desert, CA.  相似文献   

12.
13.
14.
15.
16.
Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology – including embryonic and adult stem cells and induced pluripotent stem cells – clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE‐Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem‐cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour‐related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号