首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus type 1 (HSV-1) infection causes the active degradation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), and this process is reliant on the expression of the HSV-1 immediate-early protein Vmw110. In this study we investigated in more detail the mechanism by which the degradation occurs, the domains of Vmw110 which are required, and whether Vmw110 is by itself sufficient for the effect. We found that proteasome inhibitors prevented the degradation of DNA-PKcs, indicating the involvement of a proteasome pathway. Furthermore, the continued activity of DNA-PK during infection in the presence of these inhibitors indicated that Vmw110 does not directly alter the enzyme activity of DNA-PKcs prior to its degradation in a normal infection. Indeed, Vmw110 was found to bind to neither the catalytic nor Ku subunits of DNA-PK. Using mutant Vmw110 viruses we show that the RING finger domain of Vmw110 is essential for the induced degradation of DNA-PKcs but that the ability of Vmw110 to bind to a cellular ubiquitin-specific protease (HAUSP) is not required. When expressed in the absence of other viral proteins, Vmw110 was sufficient to cause the degradation of DNA-PKcs, indicating that the effect on the stability of DNA-PKcs was a direct consequence of Vmw110 activity and not an indirect Vmw110-dependent effect of virus infection. Finally, the Vmw110-induced degradation of DNA-PKcs and loss in DNA-PK activity appears to be beneficial to HSV-1 infection, as virus replication was more efficient in cells lacking DNA-PKcs, especially at low multiplicities of infection.  相似文献   

2.
Examination of cells at the early stages of herpes simplex virus type 1 infection revealed that the viral immediate-early protein Vmw110 (also known as ICP0) formed discrete punctate accumulations associated with centromeres in both mitotic and interphase cells. The RING finger domain of Vmw110 (but not the C-terminal region) was essential for its localization at centromeres, thus distinguishing the Vmw110 sequences required for centromere association from those required for its localization at other discrete nuclear structures known as ND10, promyelocytic leukaemia (PML) bodies or PODs. We have shown recently that Vmw110 can induce the proteasome-dependent loss of several cellular proteins, including a number of probable SUMO-1-conjugated isoforms of PML, and this results in the disruption of ND10. In this study, we found some striking similarities between the interactions of Vmw110 with ND10 and centromeres. Specifically, centromeric protein CENP-C was lost from centromeres during virus infection in a Vmw110- and proteasome-dependent manner, causing substantial ultrastructural changes in the kinetochore. In consequence, dividing cells either became stalled in mitosis or underwent an unusual cytokinesis resulting in daughter cells with many micronuclei. These results emphasize the importance of CENP-C for mitotic progression and suggest that Vmw110 may be interfering with biochemical mechanisms which are relevant to both centromeres and ND10.  相似文献   

3.
Herpes simplex virus type 1 (HSV-1) immediate-early protein Vmw110 stimulates the onset of virus infection in a multiplicity-dependent manner and is required for efficient reactivation from latency. Recent work has shown that Vmw110 is able to interact with or modify the stability of several cellular proteins. In this report we analyze the ability of Vmw110 to inhibit the progression of cells through the cell cycle. We show by fluorescence-activated cell sorter and/or confocal microscopy analysis that an enhanced green fluorescent protein-tagged Vmw110 possesses the abilities both to prevent transfected cells moving from G(1) into S phase and to block infected cells at an unusual stage of mitosis defined as pseudo-prometaphase. The latter property correlates with the Vmw110-induced proteasome-dependent degradation of CENP-C, a centromeric protein component of the inner plate of human kinetochores. We also show that whereas Vmw110 is not the only viral product implicated in the block of infected cells at the G(1)/S border, the mitotic block is a specific property of Vmw110 and more particularly of its RING finger domain. These data explain the toxicity of Vmw110 when expressed alone in transfected cells and provide an explanation for the remaining toxicity of replication-defective mutants of HSV-1 expressing Vmw110. In addition to contributing to our understanding of the effects of Vmw110 on the cell, our results demonstrate that Vmw110 expression is incompatible with the proliferation of a dividing cell population. This factor is of obvious importance to the design of gene therapy vectors based on HSV-1.  相似文献   

4.
HSV-1 IE protein Vmw110 causes redistribution of PML.   总被引:35,自引:3,他引:32       下载免费PDF全文
R D Everett  G G Maul 《The EMBO journal》1994,13(21):5062-5069
Herpes simplex virus immediate-early protein Vmw110 is required for fully efficient viral gene expression and reactivation from latency. At early times of viral infection, Vmw110 localizes to discrete nuclear structures (known as ND10, PODs or Kr bodies) which contain several cellular proteins, including PML. Interestingly, the unregulated growth of promyelocytic leukaemia cells is correlated with disruption of the normal state of ND10. In this paper we show that: (i) Vmw110 affects the distribution of PML in the cell; (ii) Vmw110 proteins lacking a functional RING finger zinc-binding domain cause the production of striking abnormal cytoplasmic and nuclear structures, some of which contain PML and other ND10 antigens; (iii) a mutant form of Vmw110 which is confined to the cytoplasm appears to result in cytoplasmic PML in some cells; (iv) normal interaction with the nuclear structures requires the C-terminal portion of Vmw110; (v) the C-terminal portion of Vmw110, when linked to a heterologous protein, disrupts the normal distribution of PML. The results suggest that, in normal cells, the PML protein migrates between nucleus and cytoplasm. These observations present an unexpected link between processes involved in the control of cell growth and viral infection and latency.  相似文献   

5.
Reactivation of latent herpes simplex virus type 2 (HSV-2) by the immediate-early protein Vmw110 was studied by using an in vitro latency system. Adenovirus recombinants that express Vmw110 reactivated latent HSV-2. An HSV-1 mutant possessing a deletion in a carboxy-terminal region of Vmw110 reactivated latent HSV-2, whereas mutant FXE, which has a deletion in the second exon, did not. Therefore, Vmw110 alone is required to reactivate latent HSV-2 in vitro, and the region of Vmw110 defined by the deletion in FXE is important for this process.  相似文献   

6.
Herpes simplex virus type 1 immediate-early protein Vmw110 is a non-specific activator of gene expression and is required for efficient initiation of the viral lytic cycle. Since Vmw110-deficient viruses reactivate inefficiently in mouse latency models it has been suggested that Vmw110 plays a role in the balance between the latent and lytic states of the virus. The mechanisms by which Vmw110 achieves these functions are poorly understood. Vmw110 migrates to discrete nuclear structures (ND10) which contain the cellular PML protein, and in consequence PML and other constituent proteins are dispersed. In addition, Vmw110 binds to a cellular protein of approximately 135 kDa, and its interactions with the 135 kDa protein and ND10 contribute to its ability to stimulate gene expression and viral lytic growth. In this report we identify the 135 kDa protein as a novel member of the ubiquitin-specific protease family. The protease is distributed in the nucleus in a micropunctate pattern with a limited number of larger discrete foci, some of which co-localize with PML in ND10. At early times of virus infection, the presence of Vmw110 increases the proportion of ND10 which contain the ubiquitin-specific protease. These results identify a novel, transitory component of ND10 and implicate a previously uncharacterized ubiquitin-dependent pathway in the control of viral gene expression.  相似文献   

7.
Acute promyelocytic leukaemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and the retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex (termed ND10, Kr bodies, nuclear bodies, PML oncogenic domains or PODs) which is disrupted in the APL disease state. PML contains a number of characterized motifs including a Zn2+ binding domain called the RING or C3HC4 finger. Here we describe the solution structure of the PML RING finger as solved by 1H NMR methods at physiological pH with r.m.s. deviations for backbone atoms of 0.88 and 1.39 A for all atoms. Additional biophysical studies including CD and optical spectroscopy, show that the PML RING finger requires Zn2+ for autonomous folding and that cysteines are used in metal ligation. A comparison of the structure with the previously solved equine herpes virus IE110 RING finger, shows significant differences suggesting that the RING motif is structurally diverse. The role of the RING domain in PML nuclear body formation was tested in vivo, by using site-directed mutagenesis and immunofluorescence on transiently transfected NIH 3T3 cells. Independently mutating two pairs of cysteines in each of the Zn2+ binding sites prevents PML nuclear body formation, suggesting that a fully folded RING domain is necessary for this process. These results suggest that the PML RING domain is probably involved in protein-protein interactions, a feature which may be common to other RING finger domains.  相似文献   

8.
Herpes simplex virus type 1 immediate-early protein Vmw110 is a non-specific activator of gene expression and is required for efficient initiation of the viral lytic cycle. Since Vmw110-deficient viruses reactivate inefficiently in mouse latency models it has been suggested that Vmw110 plays a role in the balance between the latent and lytic states of the virus. The mechanisms by which Vmw110 achieves these functions are poorly understood. Vmw110 migrates to discrete nuclear structures (ND10) which contain the cellular PML protein, and in consequence PML and other constituent proteins are dispersed. In addition, Vmw110 binds to a cellular protein of approximately 135 kDa, and its interactions with the 135 kDa protein and ND10 contribute to its ability to stimulate gene expression and viral lytic growth. In this report we identify the 135 kDa protein as a novel member of the ubiquitin-specific protease family. The protease is distributed in the nucleus in a micropunctate pattern with a limited number of larger discrete foci, some of which co-localize with PML in ND10. At early times of virus infection, the presence of Vmw110 increases the proportion of ND10 which contain the ubiquitin-specific protease. These results identify a novel, transitory component of ND10 and implicate a previously uncharacterized ubiquitin-dependent pathway in the control of viral gene expression.  相似文献   

9.
Herpes simplex virus type 1 immediate early protein ICP0 influences virus infection by inducing the degradation of specific cellular proteins via a mechanism requiring its RING finger and the ubiquitin-proteasome pathway. Many RING finger proteins, by virtue of their RING finger domain, interact with E2 ubiquitin-conjugating enzymes and act as a component of an E3 ubiquitin ligase. We have recently shown that ICP0 induces the accumulation of colocalizing, conjugated ubiquitin, suggesting that ICP0 can act as or contribute to an E3 ubiquitin ligase. In this report we demonstrate that the ICP0-related RING finger proteins encoded by other alphaherpesviruses also induce colocalizing, conjugated ubiquitin, thereby suggesting that they act by similar biochemical mechanisms.  相似文献   

10.
The RING finger domain occurs in a wide variety of proteins involved in cellular regulation. The polymerase chain reaction was used to search for novel RING finger proteins, using primers derived from expressed sequence tags (ests). A cDNA encoding a novel RING finger protein expressed in brain, lung, breast, placenta, kidney, muscle, and germinal center B cells is described. The human gene is expressed in a variety of tumors, including anaplastic oligodendroglioma and maps to chromosome 10q24.3, a region showing frequent deletion or loss of heterozygosity in glioblastomas. It was therefore designated glioblastoma expressed RING finger protein (GERP). GERP contains an N-terminal RING finger, followed by two B-boxes and a coiled-coil, and thus belongs to the RBCC subfamily of RING finger proteins. The structure of this protein and its mapping to a locus thought to harbor tumor suppressor genes indicates that it may be a new tumor suppressor gene important in gliomas and other malignancies.  相似文献   

11.
Herpes simplex virus type 1 immediate-early protein Vmw110 stimulates the onset of virus infection and is required for efficient reactivation from latency. In transfection assays, Vmw110 is a potent activator of gene expression, but its mode of action has yet to be determined. Previous work has shown that Vmw110 localizes to specific intranuclear structures known as ND10, PML bodies, or PODs and causes the disruption of these domains. The ability of Vmw110 to disrupt ND10 correlates with its biological activities in infected and transfected cells. It has also been found that Vmw110 binds strongly and specifically to a ubiquitin-specific protease known as HAUSP, itself a component of a subset of ND10. In this study we have investigated the role of HAUSP in Vmw110 activity; single amino acid residues of Vmw110 required for the interaction were identified, and the effects of mutation of these residues in infected and transfected cells were then assayed. The results indicate that the ability to bind to HAUSP contributes to the functional activities of Vmw110.  相似文献   

12.
RNF151, a testis-specific RING finger protein, interacts with dysbindin   总被引:1,自引:0,他引:1  
RING finger proteins play important roles in spermatogenesis. Here, we report that a novel RING finger protein RNF151, with a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TRAF-type zinc finger domain, was exclusively expressed in the mouse testis and developmentally regulated during spermatogenesis. While RNF151 mRNA was present in round spermatids, its protein was expressed in elongating spermatids of the stage VIII-IX seminiferous tubules. The NLS together with the RING domain were necessary and sufficient for the nuclear localization of RNF151-EGFP in transfected cells. Yeast two-hybrid screening identified the physical interaction of mouse RNF151 and dysbindin, which was confirmed by the co-immunoprecipitation of the proteins and by their co-localization in intact cells. As dysbindin has lately been shown to be involved in membrane biogenesis and fusion, a key process for acrosome formation, we propose that RNF151 may play a role in acrosome formation.  相似文献   

13.
SLI-1, a Caenorhabditis elegans homologue of the proto-oncogene product c-Cbl, is a negative regulator of LET-23-mediated vulval differentiation. Lack of SLI-1 activity can compensate for decreased function of the LET-23 epidermal growth factor receptor, the SEM-5 adaptor, but not the LET-60 RAS, suggesting that SLI-1 acts before RAS activation. SLI-1 and c-Cbl comprise an N-terminal region (termed SLI-1:N/Cbl-N, containing a four-helix bundle, an EF hand calcium-binding domain, and a divergent SH2 domain) followed by a RING finger domain and a proline-rich C-terminus. In a transgenic functional assay, the proline-rich C-terminal domain is not essential for sli-1(+) function. A protein lacking the SH2 and RING finger domains has no activity, but a chimeric protein with the SH2 and RING finger domains of SLI-1 replaced by the equivalent domains of c-Cbl has activity. The RING finger domain of c-Cbl has been shown recently to enhance ubiquitination of active RTKs by acting as an E3 ubiquitin-protein ligase. We find that the RING finger domain of SLI-1 is partially dispensable. Further, we identify an inhibitory tyrosine of LET-23 requiring sli-1(+) for its effects: removal of this tyrosine closely mimics the loss of sli-1 but not of another negative regulator, ark-1. Thus, we suggest that this inhibitory tyrosine mediates its effects through SLI-1, which in turn inhibits signaling upstream of LET-60 RAS in a manner not wholly dependent on the ubiquitin-ligase domain.  相似文献   

14.
15.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

16.
Herpes simplex virus type 1 regulatory protein ICP0 contains a zinc-binding RING finger and has been shown to induce the proteasome-dependent degradation of a number of cellular proteins in a RING finger-dependent manner during infection. This domain of ICP0 is also required to induce the formation of unanchored polyubiquitin chains in vitro in the presence of ubiquitin-conjugating enzymes UbcH5a and UbcH6. These data indicate that ICP0 has the potential to act as a RING finger ubiquitin ubiquitin-protein isopeptide ligase (E3) and to induce the degradation of certain cellular proteins through ubiquitination and proteasome-mediated degradation. Here we demonstrate that ICP0 is a genuine RING finger ubiquitin E3 ligase that can interact with and mediate the ubiquitination of the major oncoprotein p53 both in vitro and in vivo. Ubiquitination of p53 requires ICP0 to have an intact RING finger domain and occurs independently of its ability to bind to the ubiquitin-specific protease USP7.  相似文献   

17.
The breast and ovarian cancer-specific tumor suppressor RING finger protein BRCA1 has been identified as an E3 ubiquitin (Ub) ligase through in vitro studies, which demonstrated that its RING finger domain can autoubiquitylate and monoubiquitylate histone H2A when supplied with Ub, E1, and UBC4 (E2). Here we report that the E3 ligase activity of the N-terminal 110 amino acid residues of BRCA1, which encodes a stable domain containing the RING finger, as well as that of the full-length BRCA1, was significantly enhanced by the BARD1 protein (residues 8-142), whose RING finger domain itself lacked Ub ligase activity in vitro. The results of mutagenesis studies indicate that the enhancement of BRCA1 E3 ligase activity by BARD1 depends on direct interaction between the two proteins. Using K48A and K63A Ub mutants, we found that BARD1 stimulated the formation of both Lys(48)- and Lys(63)-linked poly-Ub chains. However, the enhancement of BRCA1 autoubiquitylation by BARD1 mostly resulted in poly-Ub chains linked through Lys(63), which could potentially activate biological pathways other than BRCA1 degradation. We also found that co-expression of BRCA1 and BARD1 in living cells increased the abundance and stability of both proteins and that this depended on their ability to heterodimerize.  相似文献   

18.
LNX is a RING finger and PDZ domain containing protein that interacts with the cell fate determinant Numb. To investigate the function of LNX, we tested its RING finger domain for ubiquitin ligase activity. The isolated RING finger domain was able to function as an E2-dependent, E3 ubiquitin ligase in vitro and mutation of a conserved cysteine residue within the RING domain abolished its activity, indicating that LNX is the first described PDZ domain-containing member of the E3 ubiquitin ligase family. We have identified Numb as a substrate of LNX E3 activity in vitro and in vivo. In addition to the RING finger, a region of LNX, including the Numb PTB domain-binding site and the first PDZ domain, is required for Numb ubiquitylation. Expression of wild-type but not mutant LNX causes proteasome-dependent degradation of Numb and can enhance Notch signalling. These results suggest that the levels of mammalian Numb protein and therefore, by extension, the processes of asymmetric cell division and cell fate determination may be regulated by ubiquitin-dependent proteolysis.  相似文献   

19.
The acrosome reaction (i.e. the exocytosis of the sperm vesicle) is a prerequisite for fertilization, but its molecular mechanism is largely unknown. We have identified a cDNA clone for a gene named haprin, which encodes a haploid germ cell-specific RING finger protein. This protein is a novel member of the RBCC (RING finger, B-box type zinc finger, and coiled-coil domain) motif family that has roles in several cellular processes, such as exocytosis. It is transcribed exclusively in testicular germ cells after meiotic division. Western blot and immunohistochemical analyses showed the molecular weight of Haprin protein to be Mr approximately 82,000. It was localized in the acrosomal region of elongated spermatids and mature sperm and was not present in acrosome-reacted sperm. The specific antibody against the RING finger domain of Haprin inhibited the acrosome reaction in permeabilized sperm. These results indicated that the novel RBCC protein Haprin plays a key role in the acrosome reaction and fertilization.  相似文献   

20.
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号