首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reconstitution of microsomal membrane monooxygenase system with variable contents of the hydroxylating chain enzymatic components was carried out. It was found that during self-assembly of microsomal membranes solubilized with 4% sodium cholate and gel filtration through Sephadex LH-20 in the presence of isolated microsomal enzymes, two forms of cytochrome P-450, i. e. phenobarbital- and 3-methylcholantrene-induced ones, and NADPH-cytochrome P-450 reductase, the exogenous enzymes are incorporated into the microsomal membrane matrices of control and methyl-cholantrene-treated animals. In the membranes reconstituted from the microsomes of the methylcholantrene-induced animals the catalytic activity of cytochrome P-448 in the metabolism of benz(a)pyrene at varying cytochrome P-448 and NADPH-cytochrome P-450 reductase contents were investigated.  相似文献   

2.
In vitro exposure of hepatocytes or liver microsomes to t-butyl hydroperoxide resulted in a marked decrease of liver microsomal calcium pump activity. Decreased calcium pump activity was dependent upon both concentration and time. Liver microsomes could be protected from this effect by glutathione or dithiothreitol. In addition to decreased calcium pump activity, exposure of liver microsomes to t-butyl hydroperoxide produced a concentration-dependent aggregation of microsomal membrane protein as determined by polyacrylamide gel electrophoresis. Inhibition of microsomal calcium pump activity was observed when intact hepatocytes were incubated, in vitro, with t-butyl hydroperoxide. However, aggregation of microsomal membrane protein was not observed when hepatocytes were incubated with t-butyl hydroperoxide. The effects produced by exposure of liver microsomes to this compound do not appear to be a complete model of actions of the compound on intact cells.  相似文献   

3.
Maize microsomal benzoxazinone N-monooxygenase   总被引:3,自引:0,他引:3       下载免费PDF全文
The benzoxazinones occur in hydroxamic acid and lactam forms in maize (Zea mays L.) tissue. The hydroxamic acid forms which possess a N-hydroxyl group are found in the highest concentration while the lactam members which lack the N-hydroxyl group occur in lower concentrations. The hydroxamic acid 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) has as its lactam counterpart 2-hydroxy-1,4-benzoxazin-3-one (HBOA). An enzyme has been identified in maize microsomal preparations which catalyzes the N-hydroxylation of HBOA to form DIBOA. The enzyme is initially observed in seedlings 2 days after imbibition which coincides with the onset of hydroxamic acid accumulation. The enzyme requires NADPH and is inhibited by sulfhydryl reagents, NADP, cytochrome c, cations, carbon monoxide, and nitrogen gas. The effect of nitrogen can be reversed by exposing the enzyme to air, while the effect of carbon monoxide can be reversed by exposing the enzyme to 450 nanometer light during the incubation period. The apparent Km values for HBOA and NADPH are 13 and 5 micromolar, respectively. The pH optimum is 7.5 and the temperature optimum for the enzyme is 35°C. A 450 nanometer absorbance peak is observed when reduced microsomal preparations are exposed to carbon monoxide which in combination with other data presented supports the hypothesis that the enzyme is a cytochrome P-450 dependent N-monooxygenase.  相似文献   

4.
Summary Mouse liver microsomes were prepared by repeated washing, homogenization, and centrifugation until almost no more soluble enzymes were found in the supernatant of the last centrifugation. About 0.09% of the total glutathione S-transferase activity and comparable amount of soluble enzymes were detected in microsomes solubilized with Emulgen 913. By double immunodiffusion, microsomal glutathione S-transferases were shown to have a complete immunological identity with cytosolic F2 and F3 transferase from mouse liver. By Sephadex gel filtration chromatography in 1% Emulgen 913, part of the microsomal transferase activity (20 to 50%) was shown to be associated with the microsomal membrane protein fraction and appeared in the void volume. Partially purified microsomal transferases were found to have molecular weights, isoelectric points and Km's for substrate and GSH which are comparable to those of soluble liver transferases. This study seems to suggest that the presence of glutathione S-transferases in microsomes is the result of specific and nonspecific association between the microsomal membrane and soluble liver transferases.  相似文献   

5.
Thiourea and diethylthiourea, two compounds which react with hydroxyl radicals, inhibited NADPH-dependent microsomal oxidation of ethanol and 1-butanol. Inhibition by both compounds was more effective in the presence of the catalase inhibitor, azide. Inhibition by thiourea was noncompetitive with respect to ethanol in the absence of azide but was competitive in the presence of azide. Urea, a compound which does not react with hydroxyl radicals or H2O2, was without effect. Thiourea had no effect on NADH- and NADH-cytochrome c reductase, NADPH oxidase, and NADH- and NADPH-dependent oxygen uptake. Thiourea inhibited the activities of aniline hydroxylase and aminopyrine demethylase. Thiourea, but no other hydroxyl radical scavengers, e.g., dimethyl sulfoxide, mannitol, and benzoate, reacted directly with H202 and decreased H2O2 accumulation in the presence of azide. Therefore the actions of thiourea are complex because it can react with both hydroxyl radicals and H2O2. Differences between the actions of thiourea and those previously reported for dimethyl sulfoxide, mannitol, and benzoate, e.g., effects on drug metabolism, effectiveness of inhibition in the absence of azide, or kinetics of the inhibition, probably reflect the fact that thiourea reacts directly with H2O2 whereas the other agents do not. The current results remain consistent with the concept that microsomal oxidation of alcohols involves interactions of the alcohols with hydroxyl radicals generated from microsomal electron transfer.  相似文献   

6.
The microsomal dicarboxylyl-CoA synthetase.   总被引:6,自引:2,他引:4       下载免费PDF全文
Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo.  相似文献   

7.
Purification of hepatic microsomal membranes   总被引:5,自引:0,他引:5  
  相似文献   

8.
9.
10.
Selenium and hepatic microsomal hemoproteins   总被引:3,自引:0,他引:3  
The microsomal share of liver homogenate 75Se after injection of a tracer dose of 75SeO32? was three times greater in rats fed a selenium-deficient diet than in rats fed a selenium-adequate diet. Basal levels of microsomal cytochromes P-450 and b5 were unaffected by selenium deficiency. However, induction of these cytochromes by phenobarbital was markedly inpaired in selenium-deficient rats, whereas liver weight increase and NADPH cytochrome c reductase induction were not impaired. These data indicate that selenium is essential for phenobarbital induction of microsomal hemoproteins.  相似文献   

11.
Bovine thyroid microsomal monoamine oxidase   总被引:2,自引:0,他引:2  
  相似文献   

12.
The effect of varying concentrations of oxygen on NADPH-dependent microsomal chemiluminescence was determined. Light emission increased as the concentration of oxygen was elevated from 0 to 10 to 20%, and then began to decrease upon further increases in oxygen concentration to 50 and 100%. This biphasic response of chemiluminescence is similar to that previously observed for microsomal generation of hydroxyl radical, however, the light emission was not sensitive to superoxide dismutase, catalase or benzoate confirming the lack of a role for .OH in the light emission. The biphasic nature of the response of chemiluminescence is similar to that reported for exhalation of ethane and pentane but not that of malondialdehyde as a measure of lipid peroxidation, although the concentrations of O2 to reach the maximum effect differ. Activity of NADPH-cytochrome P450 reductase was decreased at the elevated concentrations of O2. The biphasic response of chemiluminescence to O2 appears to reflect the need for a critical amount of O2 to generate the initiating oxidizing species, and the effect of O2 on the appropriate redox state of the iron catalyst.  相似文献   

13.
1. The substrate specificity of membrane-bound and purified epoxide hydrase from rat liver microsomes has been studied. Both enzyme preparations catalyzed the hydration of a variety of alkene oxidase as well as arene oxides of several polycyclic aromatic hydrocarbons. 2. Unlike the membrane-bound enzyme, the rate of hydration for most of the substrates catalyzed by the purified epoxide hydrase was constant for only 1 or 2 min. The addition of dilauroyl phosphatidylcholine or heated microsomes to the incubation mixture extended the linearity of the reaction. 3. When rat liver microsomes were used as the source of the enzyme, the apparent Km values for many of the substrates were dependent on the amount of microsomes used. When purified epoxide hydrase was used as the enzyme source and benzo(a)pyrene 11,12-oxide as substrate, the apparent Km for benzo(a)pyrene 11,12-oxide was independent of enzyme concentration but dependent on added lipid concentration. Thus, in the absence of added dilauroyl phosphatidylcholine or in the presence of this lipid at a concentration below its critical micelle concentration, the observed Km for benzo(a)pyrene 11,12-oxide remained constant. However, when the lipid concentration was greater than the critical micelle concentration, the apparent Km value increased linearly with lipid concentration. These results are consistent with a model based on the partition of lipid-soluble substrate between the lipid micelle and the aqueous medium.  相似文献   

14.
15.
16.
  • 1.1. To characterize an enzyme which metabolizes retinal in liver microsomes, several properties of the enzymatic reaction from retinal to retinoic acid were investigated using rabbit liver microsomes.
  • 2.2. The maximum pH of the reaction in the liver microsomes was 7.6.
  • 3.3. The Km and Vmax values for all-trans, 9-cis and 13-cis-retinals were determined.
  • 4.4. The reaction proceeded in the presence of NADPH and molecular oxygen.
  • 5.5. The incorporation of one atom of molecular oxygen into retinal was confirmed by using oxygen-18, showing that the reaction comprised monooxygenation, not dehydrogenation.
  • 6.6. The monooxygenase activity was inhibited by carbon monoxide, phenylisocyanide and antiNADPH-cytochrome P-450 reductase IgG, but not by anti-cytochrome b5 IgG.
  • 7.7. The enzymatic activity inhibited by carbon monoxide was photoreversibly restored by light of a wavelength of around 450 nm.
  • 8.8. The retinal-induced spectra of liver microsomes with three isomeric retinals were type I spectra.
  • 9.9. The microsomal monooxygenase activity induced by phenobarbital or ethanol were more effective than that by 3-methylcholanthrene, clotrimazole or β-naphthoflavone.
  • 10.10. These results showed that the monooxygenase reaction from retinal to retinoic acid in liver microsomes is catalyzed by a cytochrome P-450-linked monooxygenase system.
  相似文献   

17.
Human adrenal microsomes have been labelled with 125I and immunoprecipitated with sera from patients with Addison's disease. The immunoprecipitates were then analysed by SDS-PAGE and autoradiography. 13 of the 23 sera from the Addison patients studied contained antibodies which reacted with a 55 kDa adrenal microsomal protein. The same 13 sera were also positive for adrenal antibodies as judged by immunofluorescence. The 55 kDa protein was not immunoprecipitated from placenta or thyroid microsomes by Addison sera. Furthermore, patients with Graves' disease or rheumatoid arthritis did not immunoprecipitate the 55 kDa protein from adrenal microsomes. Our studies suggest therefore that Addison sera contain antibodies to a 55 kDa adrenal specific protein which may well be the antigen observed on immunofluorescence.  相似文献   

18.
19.
20.
Tetrahymena calmodulin radioiodinated with a lactoperoxidase method retained full ability to activate Tetrahymena guanylate cyclase. Binding of [125I]calmodulin to Tetrahymena microsomal membranes was Ca2+-dependent and inhibited by excess unlabeled calmodulin or trifluoperazine. When Triton X-100-solubilized microsomes were chromatographed on calmodulin Sepharose, several proteins were found to interact with calmodulin in a Ca2+-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号