首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification "microbialite" origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria are the principal nitrogen fixers of the Heron Island beach rock.  相似文献   

2.
Bacterial Life and Dinitrogen Fixation at a Gypsum Rock   总被引:1,自引:0,他引:1       下载免费PDF全文
The organisms of a bluish-green layer beneath the shards of a gypsum rock were characterized by molecular techniques. The cyanobacterial consortium consisted almost exclusively of Chroococcidiopsis spp. The organisms of the shards expressed nitrogenase activity (C2H2 reduction) aerobically and in light. After a prolonged period of drought at the rock, the cells were inactive, but they resumed nitrogenase activity 2 to 3 days after the addition of water. In a suspension culture of Chroococcidiopsis sp. strain PCC7203, C2H2 reduction required microaerobic conditions and was strictly dependent on low light intensities. Sequencing of a segment of the nitrogenase reductase gene (nifH) indicated that Chroococcidiopsis possesses the alternative molybdenum nitrogenase 2, expressed in Anabaena variabilis only under reduced O2 tensions, rather than the widespread, common molybdenum nitrogenase. The shards apparently provide microsites with reduced light intensities and reduced O2 tension that allow N2 fixation to proceed in the unicellular Chroococcidiopsis at the gypsum rock, unless the activity is due to minute amounts of other, very active cyanobacteria. Phylogenetic analysis of nifH sequences tends to suggest that molybdenum nitrogenase 2 is characteristic of those unicellular or filamentous, nonheterocystous cyanobacteria fixing N2 under microaerobic conditions only.  相似文献   

3.
4.
Benthic nitrogen fixation has been estimated to contribute 15 Tg N year(-1) to the marine nitrogen budget. With benthic marine nitrogen fixation being largely overlooked in more recent surveys, a refocus on benthic diazotrophy was considered important. Variations in nitrogenase activity (acetylene reduction-gas chromatography) in a tropical lagoon in the western Indian Ocean (Zanzibar, Tanzania) were monitored over a 3-year period (2003-2005) and related to cyanobacterial and diazotrophic microbial diversity using a polyphasic approach. Different nitrogenase activity patterns were discerned, with the predominant pattern being high daytime activities combined with low nighttime activities. Analyses of the morphological and 16S rRNA gene diversity among cyanobacteria revealed filamentous nonheterocystous (Oscillatoriales) and unicellular (Chroococcales) representatives to be predominant. Analyses of the nifH gene diversity showed that the major phylotypes belonged to noncyanobacterial prokaryotes. However, as shown by cyanobacterial selective nifH-denaturing gradient gel electrophoresis analysis, cyanobacterial nifH gene sequences were present at all sites. Several nifH and 16S rRNA gene phylotypes were related to uncultured cyanobacteria or bacteria of geographically distant habitats, stressing the widespread occurrence of still poorly characterized microorganisms in tropical benthic marine communities.  相似文献   

5.
Lake Atitlan, Guatemala, a freshwater lake in South America, experiences annually recurring blooms comprised of the planktic filamentous cyanobacterium Lyngbya robusta. Previous physiochemical characterisation of the bloom identified diurnal nitrogenase activity typical of non-heterocystous cyanobacteria, in addition to the low-level detection of the cyanotoxins cylindrospermopsin and saxitoxin. A molecular approach, combining deep sequencing of the 16S rRNA and nifH genes, was applied to a cyanobacteria-dominated sample collected during the extensive 2009 bloom. Lyngbya accounted for over 60 % of the total 16S rRNA sequences with the only other cyanobacterial species detected being the picophytoplankton Synechococcus. The remaining bacterial population was comprised of organisms typical of other eutrophic freshwater bodies, although the proportionate abundances were atypical. An obligate anaerobe Opitutus, not typically found in freshwater systems, was identified within the community which suggests it may have a role in enhancing nitrogen fixation. Primary nitrogen fixation was attributed to Lyngbya, with other putative nitrogen fixers, Desulfovibrio, Clostridium and Methylomonas, present at very low abundance.  相似文献   

6.
Currently, there is no consensus concerning the geographic distribution and extent of endemism in Antarctic cyanobacteria. In this paper we describe the phenotypic and genotypic diversity of cyanobacteria in a field microbial mat sample from Lake Fryxell and in an artificial cold-adapted sample cultured in a benthic gradient chamber (BGC) by using an inoculum from the same mat. Light microscopy and molecular tools, including 16S rRNA gene clone libraries, denaturing gradient gel electrophoresis, and sequencing, were used. For the first time in the study of cyanobacterial diversity of environmental samples, internal transcribed spacer (ITS) sequences were retrieved and analyzed to complement the information obtained from the 16S rRNA gene. Microscopy allowed eight morphotypes to be identified, only one of which is likely to be an Antarctic endemic morphotype. Molecular analysis, however, revealed an entirely different pattern. A much higher number of phylotypes (15 phylotypes) was found, but no sequences from Nodularia and Hydrocoryne, as observed by microscopy, were retrieved. The 16S rRNA gene sequences determined in this study were distributed in 11 phylogenetic lineages, 3 of which were exclusively Antarctic and 2 of which were novel. Collectively, these Antarctic sequences together with all the other polar sequences were distributed in 22 lineages, 9 of which were exclusively Antarctic, including the 2 novel lineages observed in this study. The cultured BGC mat had lower diversity than the field mat. However, the two samples shared three morphotypes and three phylotypes. Moreover, the BGC mat allowed enrichment of one additional phylotype. ITS sequence analysis revealed a complex signal that was difficult to interpret. Finally, this study provided evidence of molecular diversity of cyanobacteria in Antarctica that is much greater than the diversity currently known based on traditional microscopic analysis. Furthermore, Antarctic endemic species were more abundant than was estimated on the basis of morphological features. Decisive arguments concerning the global geographic distribution of cyanobacteria should therefore incorporate data obtained with the molecular tools described here.  相似文献   

7.
To understand the structure of marine diazotrophic communities in the tropical and subtropical Atlantic Ocean, the molecular diversity of the nifH gene was studied by nested PCR amplification using degenerate primers, followed by cloning and sequencing. Sequences of nifH genes were amplified from environmental DNA samples collected during three cruises (November-December 2000, March 2002, and October-November 2002) covering an area between 0 to 28.3°N and 56.6 to 18.5°W. A total of 170 unique sequences were recovered from 18 stations and 23 depths. Samples from the November-December 2000 cruise contained both unicellular and filamentous cyanobacterial nifH phylotypes, as well as γ-proteobacterial and cluster III sequences, so far only reported in the Pacific Ocean. In contrast, samples from the March 2002 cruise contained only phylotypes related to the uncultured group A unicellular cyanobacteria. The October-November 2002 cruise contained both filamentous and unicellular cyanobacterial and γ-proteobacterial sequences. Several sequences were identical at the nucleotide level to previously described environmental sequences from the Pacific Ocean, including group A sequences. The data suggest a community shift from filamentous cyanobacteria in surface waters to unicellular cyanobacteria and/or heterotrophic bacteria in deeper waters. With one exception, filamentous cyanobacterial nifH sequences were present within temperatures ranging between 26.5 and 30°C and where nitrate was undetectable. In contrast, nonfilamentous nifH sequences were found throughout a broader temperature range, 15 to 30°C, more often in waters with temperature of <26°C, and were sometimes recovered from waters with detectable nitrate concentrations.  相似文献   

8.
We investigated the molecular diversity of cyanobacteria and bacteria during a water bloom in a lake with a long history of toxic cyanobacterial blooms (Lake Kastoria, Greece). We also tested the hypothesis whether bloom-forming cyanobacteria are preserved in the lake’s sediment 2 years after the bloom. The dominant cyanobacteria during the bloom included the potentially toxin-producing Microcystis aeruginosa and several other Chroococcales forms closely related to the genus Microcystis. This suggests that the use of cyanobacterial-specific primers seems to be very informative in describing the cyanobacteria during the water blooms. The bacterial community showed high diversity, consisting mostly of singleton and doubleton phylotypes. The majority of the phylotypes were typical lake bacteria including some potential pathogens and toxin metabolising bacteria, suggesting that the dominant toxic cyanobacteria did not have any significant effect on the bacterial community structure. In the sediment, 2 years after the water bloom, no bloom-forming cyanobacteria were retrieved, suggesting that they cannot be preserved in the sediment. Similar to the water column, sediment bacterial diversity was also high, consisting mostly of yet-uncultured bacteria that are related to environments where organic matter degradation takes place.  相似文献   

9.
The nonheterocystous filamentous cyanobacterial genus Lyngbya is a widespread and frequently dominant component of marine microbial mats. It is suspected of contributing to relatively high rates of N2 fixation associated with mats. The ability to contemporaneously conduct O2-sensitive N2 fixation and oxygenic photosynthesis was investigated in Lyngbya aestuarii isolates from a North Carolina intertidal mat. Short-term (<4-h) additions of the photosystem II (O2 evolution) inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea stimulated light-mediated N2 fixation (nitrogenase activity), indicating potential inhibition of N2 fixation by O2 production. However, some degree of light-mediated N2 fixation in the absence of 3(3,4-dichlorophenyl)-1,1-dimethylurea was observed. Electron microscopic immunocytochemical localization of nitrogenase, coupled to microautoradiographic studies of 14CO2 fixation and cellular deposition of the tetrazolium salt 2,4,5-triphenyltetrazolium chloride, revealed that (i) nitrogenase was widely distributed throughout individual filaments during illuminated and dark periods, (ii) 14CO2 fixation was most active in intercalary regions, and (iii) daylight 2,4,5-triphenyltetrazolium chloride reduction (formazan deposition) was most intense in terminal regions. Results suggest lateral partitioning of photosynthesis and N2 fixation during illumination, with N2 fixation being confined to terminal regions. During darkness, a larger share of the filament appears capable of N2 fixation.  相似文献   

10.
Molecular and morphological methods were applied to study cyanobacterial community composition in biological soil crusts (BSCs) from four areas (two nunataks and two ridges) in the Sør Rondane Mountains, Antarctica. The sampling sites serve as control areas for open top chambers (OTCs) that were put in place in 2010 at the time of sample collection and will be compared with BSC samples taken from the OTCs in the future. Cyanobacterial cell biovolume was estimated using epifluorescence microscopy, which revealed the dominance of filamentous cyanobacteria in all studied sites except the Utsteinen ridge, where unicellular cyanobacteria were the most abundant. Cyanobacterial diversity was studied by a combination of molecular fingerprinting methods based on the 16S rRNA gene (denaturing gradient gel electrophoresis (DGGE) and 454 pyrosequencing) using cyanobacteria-specific primers. The number of DGGE sequences obtained per site was variable and, therefore, a high-throughput method was subsequently employed to improve the diversity coverage. Consistent with previous surveys in Antarctica, both methods showed that filamentous cyanobacteria, such as Leptolyngbya sp., Phormidium sp. and Microcoleus sp., were dominant in the studied sites.In addition, the studied localities differed in substrate type, climatic conditions and soil parameters, which probably resulted in differences in cyanobacterial community composition. Furthermore, the BSC growing on gneiss pebbles had lower cyanobacterial abundances than BSCs associated with granitic substrates.  相似文献   

11.
The organisms of a bluish-green layer beneath the shards of a gypsum rock were characterized by molecular techniques. The cyanobacterial consortium consisted almost exclusively of Chroococcidiopsis spp. The organisms of the shards expressed nitrogenase activity (C2H2 reduction) aerobically and in light. After a prolonged period of drought at the rock, the cells were inactive, but they resumed nitrogenase activity 2 to 3 days after the addition of water. In a suspension culture of Chroococcidiopsis sp. strain PCC7203, C2H2 reduction required microaerobic conditions and was strictly dependent on low light intensities. Sequencing of a segment of the nitrogenase reductase gene (nifH) indicated that Chroococcidiopsis possesses the alternative molybdenum nitrogenase 2, expressed in Anabaena variabilis only under reduced O2 tensions, rather than the widespread, common molybdenum nitrogenase. The shards apparently provide microsites with reduced light intensities and reduced O2 tension that allow N2 fixation to proceed in the unicellular Chroococcidiopsis at the gypsum rock, unless the activity is due to minute amounts of other, very active cyanobacteria. Phylogenetic analysis of nifH sequences tends to suggest that molybdenum nitrogenase 2 is characteristic of those unicellular or filamentous, nonheterocystous cyanobacteria fixing N2 under microaerobic conditions only.  相似文献   

12.
Currently, there is no consensus concerning the geographic distribution and extent of endemism in Antarctic cyanobacteria. In this paper we describe the phenotypic and genotypic diversity of cyanobacteria in a field microbial mat sample from Lake Fryxell and in an artificial cold-adapted sample cultured in a benthic gradient chamber (BGC) by using an inoculum from the same mat. Light microscopy and molecular tools, including 16S rRNA gene clone libraries, denaturing gradient gel electrophoresis, and sequencing, were used. For the first time in the study of cyanobacterial diversity of environmental samples, internal transcribed spacer (ITS) sequences were retrieved and analyzed to complement the information obtained from the 16S rRNA gene. Microscopy allowed eight morphotypes to be identified, only one of which is likely to be an Antarctic endemic morphotype. Molecular analysis, however, revealed an entirely different pattern. A much higher number of phylotypes (15 phylotypes) was found, but no sequences from Nodularia and Hydrocoryne, as observed by microscopy, were retrieved. The 16S rRNA gene sequences determined in this study were distributed in 11 phylogenetic lineages, 3 of which were exclusively Antarctic and 2 of which were novel. Collectively, these Antarctic sequences together with all the other polar sequences were distributed in 22 lineages, 9 of which were exclusively Antarctic, including the 2 novel lineages observed in this study. The cultured BGC mat had lower diversity than the field mat. However, the two samples shared three morphotypes and three phylotypes. Moreover, the BGC mat allowed enrichment of one additional phylotype. ITS sequence analysis revealed a complex signal that was difficult to interpret. Finally, this study provided evidence of molecular diversity of cyanobacteria in Antarctica that is much greater than the diversity currently known based on traditional microscopic analysis. Furthermore, Antarctic endemic species were more abundant than was estimated on the basis of morphological features. Decisive arguments concerning the global geographic distribution of cyanobacteria should therefore incorporate data obtained with the molecular tools described here.  相似文献   

13.

Background

The microscopic Utermöhl method is commonly used for the recognition of the presence and taxonomic composition of potentially toxic cyanobacteria and is especially useful for monitoring reservoirs used as drinking water, recreation and fishery resources. However, this method is time-consuming and does not allow potentially toxic and nontoxic cyanobacterial strains to be distinguished. We have developed a method based on denaturing gradient gel electrophoresis (DGGE) of the marker gene ITS and the mcy-gene cluster, and DNA sequencing. We have attempted to calibrate the DGGE-method with a microscopic procedure, using water samples taken in 2011 from four lakes of the Great Mazurian Lakes system.

Results

Results showed that the classic microscopic method was much more precise and allowed the classification of the majority of cyanobacterial taxa to the species or genus. Using the molecular approach, most of the sequences could only be assigned to a genus or family. The results of DGGE and microscopic analyses overlapped in the detection of the filamentous cyanobacteria. For coccoid cyanobacteria, we only found two taxa using the molecular method, which represented 17% of the total taxa identified using microscopic observations. The DGGE method allowed the identification of two genera of cyanobacteria (Planktothrix and Microcystis) in the studied samples, which have the potential ability to produce toxins from the microcystins group.

Conclusions

The results confirmed that the molecular approach is useful for the rapid detection and taxonomic distinction of potentially toxic cyanobacteria in lake-water samples, also in very diverse cyanobacterial communities. Such rapid detection is unattainable by other methods. However, with still limited nucleotide sequences deposited in the public databases, this method is currently not sufficient to evaluate the entire taxonomic composition of cyanobacteria in lakes.  相似文献   

14.
To understand the structure of marine diazotrophic communities in the tropical and subtropical Atlantic Ocean, the molecular diversity of the nifH gene was studied by nested PCR amplification using degenerate primers, followed by cloning and sequencing. Sequences of nifH genes were amplified from environmental DNA samples collected during three cruises (November-December 2000, March 2002, and October-November 2002) covering an area between 0 to 28.3 degrees N and 56.6 to 18.5 degrees W. A total of 170 unique sequences were recovered from 18 stations and 23 depths. Samples from the November-December 2000 cruise contained both unicellular and filamentous cyanobacterial nifH phylotypes, as well as gamma-proteobacterial and cluster III sequences, so far only reported in the Pacific Ocean. In contrast, samples from the March 2002 cruise contained only phylotypes related to the uncultured group A unicellular cyanobacteria. The October-November 2002 cruise contained both filamentous and unicellular cyanobacterial and gamma-proteobacterial sequences. Several sequences were identical at the nucleotide level to previously described environmental sequences from the Pacific Ocean, including group A sequences. The data suggest a community shift from filamentous cyanobacteria in surface waters to unicellular cyanobacteria and/or heterotrophic bacteria in deeper waters. With one exception, filamentous cyanobacterial nifH sequences were present within temperatures ranging between 26.5 and 30 degrees C and where nitrate was undetectable. In contrast, nonfilamentous nifH sequences were found throughout a broader temperature range, 15 to 30 degrees C, more often in waters with temperature of <26 degrees C, and were sometimes recovered from waters with detectable nitrate concentrations.  相似文献   

15.
16.
Cyanobacterial blooms in eutrophic lakes are severe environmental problems worldwide. To characterize the spatiotemporal heterogeneity of cyanobacterial blooms, a high-throughput method is necessary for the specific detection of cyanobacteria. In this study, the cyanobacterial composition of three eutrophic waters in China (Taihu Lake, Dongqian Lake, and Dongzhen Reservoir) was determined by pyrosequencing the cpcBA intergenic spacer (cpcBA-IGS) of cyanobacteria. A total of 2585 OTUs were obtained from the normalized cpcBA-IGS sequence dataset at a distance of 0.05. The 238 most abundant OTUs contained 92% of the total sequences and were classified into six cyanobacterial groups. The water samples of Taihu Lake were dominated by Microcystis, mixed Nostocales species, Synechococcus, and unclassified cyanobacteria. Besides, all the samples from Taihu Lake were clustered together in the dendrogram based on shared abundant OTUs. The cyanobacterial diversity in Dongqian Lake was dramatically decreased after sediment dredging and Synechococcus became exclusively dominant in this lake. The genus Synechococcus was also dominant in the surface water of Dongzhen Reservoir, while phylogenetically diverse cyanobacteria coexisted at a depth of 10 m in this reservoir. In summary, targeted deep sequencing based on cpcBA-IGS revealed a large diversity of bloom-forming cyanobacteria in eutrophic lakes and spatiotemporal changes in the composition of cyanobacterial communities. The genus Microcystis was the most abundant bloom-forming cyanobacteria in eutrophic lakes, while Synechococcus could be exclusively dominant under appropriate environmental conditions.  相似文献   

17.
The filamentous nonheterocystous cyanobacterial genus Katagnymene is a common diazotrophic component of tropical and subtropical oceans. To assess the phylogenetic affiliation of this taxon, two partial 16S rRNA gene sequences and 25 partial hetR gene sequences originating from the genera Katagnymene and Trichodesmium collected from open, surface waters of the Atlantic, Indian, and Pacific oceans were compared. Single trichomes or colonies were identified morphologically by using light microscopy and then used directly as templates in hetR PCR analyses. In addition, three cultured strains, identified as Katagnymene pelagica, Katagnymene spiralis, and Trichodesmium sp., were examined. The data show that the genus Katagnymene is in the Trichodesmium cluster and that K. pelagica Lemmermann and K. spiralis Lemmermann are most likely one species, despite their different morphologies. Phylogenetic analyses also unveiled four distinct clusters in the Trichodesmium cluster, including one novel cluster. Our findings emphasize the conclusion that known morphological traits used to differentiate marine nonheterocystous cyanobacteria at the genus and species levels correlate poorly with genetic data, and a revision is therefore suggested.  相似文献   

18.
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.  相似文献   

19.
Clone libraries and morphological analysis were used to investigate cyanobacterial diversity in the cyanobacterial mat and dry crust at the bottom of the shallow, saline, alkaline Lake Khilganta (Southern Siberia, Russia). Filamentous cyanobacteria belonging to Phormidium genus and Coleofasciculus chthonoplastes were found to predominate during the dry period (2006) and the wet periods (1995 and 2012), respectively. Community composition during the dry and wet periods differed significantly. While 11 operational taxonomic units of cyanobacteria were revealed, only 3 occurred during both dry and wet periods. Occurrence of cosmopolitan C. chthonoplastes, which is common in neutral saline environments, is not typical of a continental alkaline lake and may be explained by the similarity of the dominant ions composition in lake water and in seawater.  相似文献   

20.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号