首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell extracts and conditioned media (CM) from cultured bovine aortic endothelial cells (BAEs) were fractionated by PAGE in the presence SDS, and plasminogen activator (PA) activity was localized by fibrin autography. Multiple molecular weight forms of PA were detected in both preparations. Cell-associated PAs had Mr of 48,000, 74,000, and 100,000 while secreted PAs showed Mr of 52,000, 74,000, and 100,000. A broad zone of activity (Mr 80,000-100,000) also was present in both cellular fractions. In addition, PAs of Mr 41,000 and 30,000 appeared upon prolonged incubation or repeated freezing and thawing of the samples, and probably represent degradation products of higher molecular weight forms. This complex lysis pattern was not observed when CM was subjected to isoelectric focusing. Instead, only two classes of activator were resolved, one at pH 8.5, the other at 7.6. Analysis of focused samples by SDS PAGE revealed that the activity at pH 8.5 resulted exclusively from the Mr 52,000 form; all other forms were recovered at pH 7.6. The activity of the Mr 52,000 form was neutralized by anti-urokinase IgG but was not affected by antitissue activator IgG indicating that it is a urokinaselike PA. The activities of the Mr 74,000-100,000 forms were not affected by anti-urokinase. They were blocked by antitissue activator suggesting that all the forms in this group were tissue-type PAs. The multiple forms of PA were differentially sensitive to inactivation by diisopropylfluorophosphate (DFP). Treatment of CM with 10 mM DFP for 2 h at 37 degrees C only partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton PA. The activity of the Mr 100,000 form was not affected by this treatment, or by treatment with 40 mM DFP. Thus, cultured BAEs produce multiple, immunologically distinct forms of PA which differ in size, charge, and sensitivity to DFP. These forms include both urokinaselike and tissue-activator-like PAs. The possibility that one of these forms is a zymogen is discussed.  相似文献   

2.
Vipera russellii venom was separated into thirteen fractions by means of DEAE-Sephadex A-50 column chromatography. Fraction III possessed anticoagulant and phospholipase A activities and Fraction XI possessed procoagulant and caseinolytic activities, both were further purified by gel filtration on Sephacryl S-200 column. Purified procoagulant (Component II) was a two-chain protein with molecular weight of 86 000 consisting of A-chain (Mr 66 000) and B-chain (Mr 20 000). It was a glycoprotein containing 7.8% neutral sugar and 715 amino-acid residues. The procoagulant activity was 10-times that of the crude venom. It was an acidic proteinase with isoelectric point of pH 4.2. Upon heat treatment at 60 degrees C, Component II was stable at pH 5.5 and 7.2 for 3 h, but was destroyed completely after 30 min at pH 8.9. It was devoid of esterase or amidase activity. Purified anticoagulant (Component I) was a single peptide chain with molecular weight of 16 000. It was carbohydrate free and contained 136 amino-acid residues. It was a basic protein with an isoelectric point of larger than pH 10. It was a potent phospholipase A with an enzymatic activity of 510 +/- 30 mumol/min per mg using phosphatidylcholine as substrate, and 1 microgram/ml was sufficient to cause 100% hemolysis by the indirect hemolytic method. Upon heat treatment at 90 degrees C, Component I was heat stable at pH 5.5 for more than 3 h, but was destroyed completely after 2 h at pH 7.2 and 8.9. The anticoagulant activity of Component I could be neutralized by platelet factor 3, tissue thromboplastin and cephalin.  相似文献   

3.
A Karmali  L R Santos 《Biochimie》1988,70(10):1373-1377
Peroxidase (Ec 1.11.1.7) was purified from needles of Pinus pinaster to apparent homogeneity by DE-52 cellulose chromatography with a final recovery of enzyme activity of about 85%. The purified enzyme (A402/A275 = 1.05) had a specific activity of about 948 U/mg of protein and ran as a single protein band both on SDS-PAGE and native PAGE with Mr of 37,000 and 151,000, respectively. Both native PAGE and isoelectric focusing gels of the purified enzyme were stained for activity which coincided with the protein band. The pI of the purified enzyme was found to be 3.2 by isoelectric focusing on an ultrathin polyacrylamide gel. The enzyme has an optimum pH of activity of 5.0 and temperature optimum of 30 degrees C. Stability studies of the enzyme as a function of pH and temperature suggest that it is most stable at pH 5.0 and 0-40 degrees C, respectively.  相似文献   

4.
Pro-opiomelanocortin (adrenocorticotropin/endorphin prohormone) is processed to yield active hormones by cleavages at paired basic amino acid residues. In this study, an enzyme that specifically cleaves at the paired basic residues of this prohormone has been purified from bovine pituitary intermediate lobe secretory vesicles, the intracellular processing site of proopiomelanocortin. This enzyme, named pro-opiomelanocortin converting enzyme, has been characterized as a glycoprotein of Mr approximately 70,000. It has an apparent isoelectric point between 3.5 and 4.0. The pH optimum of the pro-opiomelanocortin converting enzyme is between 4 and 5, but the enzyme is highly active at the intravesicular pH of 5.1-5.6. The enzyme specifically cleaved the Lys-Arg pairs of pro-opiomelanocortin to yield Mr = to 21,000-23,000 ACTH, beta-lipotropin, Mr 13,000 and 4,500 ACTH, beta-endorphin, and a Mr = 16,000 NH2-terminal glycopeptide, the products synthesized by the pituitary intermediate lobe in situ. NH2- and COOH-terminal analysis of the products indicated that the pro-opiomelanocortin converting enzyme cleaves the peptide bond either between the Lys and Arg or on the carboxyl side of the Arg at Lys-Arg pairs of pro-opiomelanocortin. The intracellular localization, pH optimum, and cleavage specificity of the enzyme suggest that it may function as a pro-opiomelanocortin processing enzyme in the pituitary intermediate lobe in vivo.  相似文献   

5.
The proteinase secreted from Thermomonospora fusca YX grown on cellulose was purified by (NH4)2SO4 fractionation and cation-exchange chromatography. The isolated proteinase readily hydrolysed several proteins and demonstrated activity towards casein from 35 to 95 degrees C (at pH 8.0) with maximum activity at 80 degrees C. It exhibited broad pH and ionic-strength optima centered at pH 9.0 and 0.2 M-NaCl respectively, and it retained high activity in the presence of 2% (w/v) SDS, 20 mM-dithiothreitol and 1.0 M-NaCl. The proteinase, which was fully inhibited by phenylmethanesulphonyl fluoride, had an Mr of 14,500 and an isoelectric point at 9.21. A measurement of proteinase thermal stability demonstrated a T50% (15 min) of 85 degrees C at pH 4.5.  相似文献   

6.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, beta-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20-44.5 degrees C and at pH values 5.2-7.4 with optimal growth at 37-41.5 degrees C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5.0, the optimum temperature was 40 degrees C for the endoglucanase and 50 degrees C for the xylanase. Both enzyme activities were inhibited at 70 degrees C Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

7.
Two methods for extracting calelectrin, a Ca2+-regulated membrane-binding protein from the electric organ of Torpedo marmorata, have been compared and the more promising one was modified to increase the yield to 7-8 mg.kg-1 wet weight of tissue, that is 4-5 times greater than the original method. The calelectrin so obtain could be resoloved into a minor component (designated L-calelectrin) eluted from an anion-exchange column at relatively low ionic strength (100 mM NaCl) and a major component (H-calelectrin) eluted at higher ionic strength (300 mM NaCl). The two forms were also separated by chromatography on a hydrophobic resin. Electrophoresis on cellulose acetate indicated that L-calelectrin had a lower mean isoelectric point that the H-form and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate showed that under reducing conditions (presence of 5% beta-mercaptoethanol) both forms migrated as single species, the L-form having a lower apparent relative molecular mass (Mr 32,000) that the H-form (34,000). Under non-reducing conditions, there was no change in the migration of L-calelectrin but the H-form was resolved into two components of Mr 34,000 and 32,000. The addition of 2 mM Ca2+ had no effect on the migration of either form. Both forms were equally recognized by an anti-calelectrin antiserum and were microheterogeneous with respect to their isoelectric points (pH 4.3-5.5) in two-dimensional gel electrophoresis. Physical measurements were carried out on the major H-form. The Stokes radius was estimated to be 3nm, corresponding to an apparent Mr of 44,000. It was unaffected by changes in ionic strength, pH or Ca2+ concentration. Analytical ultracentrifugation gave a sedimentation constant of 2.9 S and an apparent Mr of 36,000. Measurements of circular dichroism indicated that 78% of the molecule was in the alpha-helix configuration and 22% in random coil. Ca2+ had no significant effect on the conformation.  相似文献   

8.
The biochemical properties of a second protein (CM2) encoded by RNA segment 6 of influenza C virus were investigated. Three forms of CM2 with different electrophoretic mobilities (CM2(0), CM2a, and CM2b) were detected in infected cells by immunoprecipitation with antiserum to the glutathione S-transferase (GST)-CM2 fusion protein. Treatment of infected cells with tunicamycin and digestion of immunoprecipitated proteins with endoglycosidase H or peptide-N-glycosidase F suggested that a mannose-rich oligosaccharide core is added to unglycosylated CM2(0) (Mr, approximately 16,000) to form CM2a (Mr, approximately 18,000) and that the processing of the carbohydrate chain from the high-mannose type to the complex type converts CM2a into CM2b, which is heterogeneous in electrophoretic mobility (Mr, approximately 22,000 to 30,000). Labeling of infected cells with [3H]palmitic acid showed that CM2 is fatty acylated. The fatty acid bond was sensitive to treatment with hydroxylamine and mercaptoethanol, which indicates a labile thioester-type linkage. The CM2 protein was also found to form disulfide-linked dimers and tetramers on sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions. Trypsin treatment of infected cell surfaces as well as of microsome vesicles from infected cells followed by immunoprecipitation with antiserum to the GST fusion protein containing the 56 C-terminal amino acid residues of CM2 suggested that this C-terminal domain is intracellular and exposed to the cytoplasms of microsomes. Furthermore, evidence that a small amount of CM2 is incorporated into progeny virus particles was obtained by Western blot analysis. These results, altogether, suggest that CM2 is an integral membrane protein with biochemical properties similar to those of influenza A virus M2 and influenza B virus NB proteins.  相似文献   

9.
The recombinant form of the cellulase CelF of Clostridium cellulolyticum, tagged by a C-terminal histine tail, was overproduced in Escherichia coli. The fusion protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The intact form of CelF (Mr, 79,000) was rapidly degraded at the C terminus, giving a shorter stable form, called truncated CelF (Mr, 71,000). Both the entire and the truncated purified forms degraded amorphous cellulose (kcat = 42 and 30 min(-1), respectively) and microcrystalline cellulose (kcat = 13 and 10 min(-1), respectively). The high ratio of soluble reducing ends to insoluble reducing ends released by truncated CelF from amorphous cellulose showed that CelF is a processive enzyme. Nevertheless, the diversity of the cellodextrins released by truncated CelF from phosphoric acid-swollen cellulose at the beginning of the reaction indicated that the enzyme might randomly hydrolyze beta-1,4 bonds. This hypothesis was supported by viscosimetric measurements and by the finding that CelF and the endoglucanase CelA are able to degrade some of the same cellulose sites. CelF was therefore called a processive endocellulase. The results of immunoblotting analysis showed that CelF was associated with the cellulosome of C. cellulolyticum. It was identified as one of the three major components of cellulosomes. The ability of the entire form of CelF to interact with CipC, the cellulosome integrating protein, or mini-CipC1, a recombinant truncated form of CipC, was monitored by interaction Western blotting (immunoblotting) and by binding assays using a BIAcore biosensor-based analytical system.  相似文献   

10.
Bacillus subtilis strain SO113 secretes a pectate lyase which is produced during the exponential death phase of growth, just before sporulation. This extracellular pectate lyase, which produces unsaturated products from polygalacturonate, was purified 35-fold from the culture supernatant of Bacillus subtilis by a CM Sephadex chromatography. It has an isoelectric point of about 9.6 and an Mr of 42,000. Optimum activity occurred at pH 8.4 and at 42 degrees C. Calcium has a stimulative effect on the enzyme activity while EDTA leads to enzyme inactivation. The pectate lyase has a specific activity of 131 mumol of aldehyde groups per min and per mg of protein. The Km of the purified enzyme for polygalacturonic acid was 0.862 g.l-1 and the Vmax for polygalacturonic acid hydrolysis was 1.475 mumol of unsaturated products per min and per mg of protein. By using monoclonal antibodies raised against Erwinia chrysanthemi 3937 pectate lyases, it was shown that pectate lyases b and c of this strain are immunologically closely related to the Bacillus subtilis pectate lyase.  相似文献   

11.
Electrophoresis in the presence of sodium dodecyl sulfate (SDS) provides a relatively simple means of determining molecular weights of proteins. This technique relies on the validity of a correlation between some function of Mr and the mobility of the protein through the gel matrix. However, bovine caseins (especially alpha s1-casein) have lower mobilities than expected on the basis of their known Mr. The binding of SDS to both alpha s1-casein (Mr 23,600) and beta-casein (Mr 24,000) reached a maximum at the slightly low value of 1.3 g SDS/g protein. Gel-filtration chromatography showed, however, that the alpha s1-casein:SDS complex was larger than the beta-casein:SDS complex at pH 6.8 or 7.0, but that they were similar in size at pH 2.9 or 3.0. Circular dichroism spectra indicated that the low helical structure content of both alpha s1- and beta-casein increased with the addition of SDS and/or decreasing the pH to 1.5. 13C NMR results showed that SDS bound to alpha s1- and beta-casein in the same way as it did to bovine serum albumin. Either esterification or dephosphorylation followed by amidation of alpha s1-casein increased its mobility in SDS-gel electrophoresis, but neither modification affected beta-casein mobility. These and other results indicate that the low electrophoretic velocity of alpha s1-casein in SDS-gel electrophoresis results from its unexpectedly large hydrodynamic size. This is caused by localized high negative charges on certain segments of alpha s1-casein, which would induce a considerable amount of inter- and intrasegmental electrostatic repulsion, leading to an expanded or extended structure for portions of the alpha s1-casein molecule in the presence of SDS. It is clear that the conformation, and hence the equivalent radius, of an SDS:protein complex is determined by the sequence of amino acids in the protein and that, a priori, it cannot be anticipated that the electrophoretic mobility of such a complex will bear more than a casual relationship to the Mr of the protein.  相似文献   

12.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

13.
Purification and characterization of the FokI restriction endonuclease   总被引:5,自引:0,他引:5  
The restriction endonuclease FokI from Flavobacterium okeanokoites was purified to homogeneity. Based on gel filtration, sedimentation and sodium dodecyl sulfate-polyacrylamide-gel electrophoresis, the following properties of the enzyme were determined: FokI exists in one active monomeric form, and has an Mr of 64-65.4 x 10(3).FokI is a strongly basic protein with an isoelectric point of 9.4. The enzyme exhibits restriction activity in the pH range 5.0 to 10.5 (maximum level at pH 7.0-8.5) and its divalent cation requirement is satisfied not only by Mg2+, but also by Co2+, Mn2+, Ni2+, Cd2+, Zn2+ and Fe2+.  相似文献   

14.
Bovine myelin basic protein has been investigated with regard to its solution behavior, circular dichroism and 220 MHz PMR spectral properties. At pH 4.8 gamma/2=0.1 acetate buffer, light scattering yielded a Mr of 17 700 and a virial coefficient of 1.0-10(-4) mol-ml/g2. Above pH 7.0 the protein was found to aggregate to higher mol. wt species. Sedimentation experiments at pH 4.8 yielded s degrees 20,w of 1.27 S at gamma/2=0.1 and 1.46 S at gamma/2=0.35. The diffusion coefficient determined from ultracentrifugal experiments was 7.25-10(-7) cm2/s at gamma/2=0.1 and 0.35. The value of f/f0 from diffusion at pH 4.8 and gamma/2=0.35 was 1.64, corresponding to an axial ratio of 11 to 1. The radius of gyration was calculated as 4.28 nm and the root mean square end to end distance was 10.5 nm. At pH 9.0, gamma/2=0.1, s degrees 20,w was 1.71 S and D degrees 20,w was estimated at 7.4-10(-7) cm2/s. The behavior at pH 9.0 reverted to the behavior at pH 4.8 when the pH was readjusted. The E1%/1cm=5.64 at 276.4 nm and 225 at 196 nm. Titration of the protein with trifluoroethanol elicited three distinct regions of conformation stability having increasing helical content as the mol fraction of trifluoroethanol increased. The results of the present study have permitted some comparison of analogous properties and conformational behavior with the basic membrane protein cytochrome c.  相似文献   

15.
A unique highly soluble aspermatogenic protein (AP1) was isolated from guinea pig testes and was shown by immunofluorescence to occupy the outer surface of the sperm acrosome. This protein is a potent inducer of allergic orchitis and aspermatogenesis; as little as 0.2 mug induced orchitis in 60 percent of guinea pig tested. The AP1 protein, relatively small and neutral, is stable under acid conditions, but at pH 8.6 shows a variety of forms due either to aggregation or polymorphism. The purified AP1 protein appeared homogeneous by polyacrylamide gel electrophoresis at pH 2.7 and in sodium dodecyl sulfate and by immunoelectrophoresis using rabbit antisera to either the purified protein or the testes extract. It also showed a single band on immunodiffusion over a wide concentration range. The purification procedure consisted of delipidation with chloroform/methanol (2/1); acid extraction at pH 3.0; precipitation with 85 percent saturated ammonium sulfate; trichloroacetic acid extraction and gel filtration on Bio-Gel A-1.5; gel filtration on Bio-Gel P-10; chromatography on CM52 cellulose; and preparative gel electrophoresis at pH 2.7. Approximately 20 mg of purified AP1 protein were obtained from 5000 g of wet guinea pig testes. The AP1 protein induced an autoimmune disease characterized by infiltration of mononuclear cells around and within the seminiferous tubules (orchitis), followed by extensive damage and destruction of the germinal cells (aspermatogenesis). The course of the disease induced by this protein (0.5 to 1 mug) was essentially identical with that seen with whole testicular tissue or other purified fractions.  相似文献   

16.
Five chemically modified forms of cellulose were prepared, characterized, and tested as substrates for a homogeneous glucanohydrolase from A. niger. The relative order of reactivity at pH 4.0 was DEAE = PEI > benzyl DEAE > cellulose > P > CM.The following abbreviations are used throughout the article: (RBB) Remazol brilliant blue R; (DEAE) diethylamino ethyl; (PEI) polethyleneimine; (CM) carboxymenthyl; (P) phospho; (DS) degree of RBB dye substitution of cellulose, in mol dye/100 glucose. This indicates that positively charged cellulose substrates are more susceptible to hydrolysis by the cellulase. This observation strengthens an earlier proposal that caroxyl groups on the enzyme are involved in substrate binding and catalytic action. Chemical modification is suggested as a method to increase the rate of enzymatic hydrolysis of cellulose, a process now in the commercial development stage.  相似文献   

17.
18.
A cellulase-hemicellulase complex was obtained from the culture supernatant of Phoma hibernica. It was purified by ammonium sulfate precipitation, column chromatography on diethylaminoethyl-Sephadex A-50 and Sephadex G-100. The preparation was capable of degrading carboxymethyl-cellulose, insoluble cellulose, xylan, galacto-, gluco-, and galactogluco-mannan. The distinct protein band obtained after isoelectrofocusing also showed activities towards these substrates. Optimum pH for cellulase and galactomannase activities was 4.5 and for xylanase activity 4.5–5.5. Tetranitromethane, urea and Fe3+ inhibited all the enzymatic activities of the complex. The preparation attacked carbohydrate polymers in different manners depending on the substrate. Cellulose was attacked in an exo-wise, xylan in an endowise manner. Nitrophenyl derivatives of carbohydrates were hydrolyzed slowly. It is suggested that the purified enzyme preparation is a complex most probably composed of subunits of different enzymatic activities.Abbreviations Used CM carboxymethyl - DEAE diethylaminoethyl - CMC carboxymethylcellulose  相似文献   

19.
A divalent cation-independent and spermine-stimulated phosphatase (protein phosphatase SP) that is active toward the phosphorylated pyruvate dehydrogenase complex has been purified about 15,000-fold to near homogeneity from extracts of bovine kidney mitochondria. Half-maximal stimulation, 1.5- to 3-fold at pH 7.0-7.3, occurred at 0.5 mM spermine. Protein phosphatase SP exhibited an apparent Mr = 140,000-170,000 as estimated by gel-filtration chromatography on Sephacryl S-300. Two major subunits, with apparent Mr = 60,000 and 34,000, were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel-permeation chromatography of protein phosphatase SP on Sephacryl S-200 in the presence of 6 M urea and 1.4 M NaCl increased its activity 3- to 6-fold and was accompanied by conversion to the catalytic subunit with an apparent Mr = approximately 34,000. Protein phosphatase SP was inactive with p-nitrophenyl phosphate and was not inhibited by protein phosphatase inhibitor 1, inhibitor 2, or the protein inhibitor of branched-chain alpha-keto acid dehydrogenase phosphatase. Protein phosphatase SP was inhibited by sheep antibody to the catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle. It appears that protein phosphatase SP is related to protein phosphatase 2A.  相似文献   

20.
Surfactant proteolipid SP-B is a hydrophobic protein of Mr = 8000 identified in organic solvent extracts of pulmonary surfactant. Analysis of the human SP-B RNA predicts that the active surfactant peptide is derived by proteolysis of an Mr = 40,000 precursor. In the present work, characteristics of synthesis, secretion and processing of SP-B were demonstrated in a pulmonary adenocarcinoma cell line by immunoprecipitation of radiolabelled precursors. Treatment of cells with tunicamycin resulted in synthesis and secretion of unglycosylated proSP-B of Mr = 39,000. Immunoprecipitation of protein produced by in vitro translation of human lung poly(A)+ RNA detected an Mr = 40,000 protein; the size discrepancy is likely related to cleavage of a leader signal sequence. Endoglycosidase-H-sensitive precursors of Mr = 41,000-43,000, pI = 5.1-5.4 were the first isoforms detected within the cells and were processed to endoglycosidase-H-resistant isoforms and secreted. Neuraminidase and endoglycosidase-F-sensitive forms of proSP-B were first detected in the media at 60 min as Mr = 42-46,000 isoforms with pI = 4.6-5.1. Proteolytically processed isoforms of proSP-B were detected primarily in the media and were generated by cleavage of an amino-terminal Mr = 16,000 peptide resulting in Mr = 27,000-33,000 isoforms (pH = 5.6-6.8). The Mr = 27,000-33,000 isoforms were sensitive to neuraminidase, resulting in isoforms with pH = 6.0-6.8. Digestion of the Mr = 27,000-33,000 peptide with endoglycosidase-F resulted in isoforms of Mr = 23,000, pH = 6.0-6.8. The endoglycosidase-F-resistant peptide of Mr = 16,000, pI = 4.2-4.4 was identified with an antiserum generated against synthetic peptides derived from the amino-terminal domain, as deduced from the SP-B DNA sequence. Further proteolytic processing of the Mr = 27,000-33,000 isoforms to the Mr = 8000 peptide detected in surfactant was not observed in this cell line. Thus, in the H441-4 cells (a cell line with morphologic features of Clara cells), SP-B is synthesized as a preproprotein which undergoes cleavage of a signal sequence and addition of asparagine-linked carbohydrate; proSP-B is secreted by processes which are independent of glycosylation. SP-B peptides of Mr = 27,000-33,000 and Mr = 16,000, representing carboxy and amino-terminal domains, accumulate in the media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号