首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: and Aims Submerged plants possess well-developed aerenchyma facilitating intra-plant gas-phase diffusion of O2 to below-ground tissues, which are usually buried in anoxic sediments. However, aquatic habitats differ in terms of O2 fluctuations in the water column and in O2 consumption of the sediment, and aquatic plants differ in aerenchymal volume and resistance to O2 diffusion through the plant and across leaf and root surfaces. The hypothesis that the freshwater isoetid Lobelia dortmanna and the marine seagrass Zostera marina should display pronounced contrasts in intra-plant O2 dynamics because of differences in morphology/anatomy, physiology and growth habitat was tested. METHODS: In order to determine the O2 dynamics and relate this to the anatomy and morphology of the two species, O2 microelectrodes were inserted in the aerenchyma of leaves and roots, the sediment pore-water, and the water column in the field. Manipulation of water column O2 in the laboratory was also carried out. KEY RESULTS: It was found that intra-plant transport of O2 between leaf and root tips takes place more readily in L. dortmanna than in Z. marina due to shorter distances and greater cross-sections of the aerenchyma. The major exchange of O2 across roots of L. dortmanna can be accounted for by small intra-plant resistances to diffusion, larger root than leaf surfaces, and greater radial diffusive resistance of leaves than roots. In contrast, the major O2 exchange across leaves than roots of Z. marina can be accounted for by the opposite anatomical-morphological features. The larger aerenchymal volume and the smaller metabolic rates of L. dortmanna compared to Z. marina imply that turnover of O2 is slower in the aerenchyma of L. dortmanna and O2 fluctuations are more dampened following changes in irradiance. Also, O2 accumulated in the aerenchyma can theoretically support dark respiration for a few hours in L. dortmanna but for only a few minutes in Z. marina. CONCLUSIONS: The build-up of O2 in the pore-water of L. dortmanna sediments during the day as a result of high release of photosynthetic O2 from roots and low O2 consumption of sediments means that sediment, aerenchyma and water are important O2 sources for respiration during the following night, while Z. marina relies on the water column as the sole source of O2 because its sediments are anoxic. These differences between L. dortmanna and Z. marina appear to represent a general difference between the isoetid species mainly inhabiting sediments of low reducing capacity of oligotrophic lakes and the elodeid freshwater species and marine seagrasses mainly inhabiting sediments of higher reducing capacity in more nutrient-rich habitats.  相似文献   

2.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

3.
湿地植物根系泌氧及其在自然基质中的扩散效应研究进展   总被引:3,自引:0,他引:3  
王文林  韩睿明  王国祥  唐晓燕  梁斌 《生态学报》2015,35(22):7286-7297
湿地植物根系径向泌氧(ROL)是构造根际氧化-还原异质微生态系统的核心要素,其扩散层为好氧、厌氧微生物提供了良好生境并促进其代谢活动,使湿地植物根际成为有机物降解、物质循环及生命活动最为强烈的场所,已有成果证明湿地植物根系ROL的强弱与污染物的去除效果密切相关。因此,开展湿地植物根系ROL及其在自然基质中的扩散效应研究,对于了解湿地植物根系ROL机理及其根际氧环境特征,进而发挥湿地植物的污染去除功能具有十分重要的意义。基于此,首先归纳了湿地植物根系ROL特征及其受影响机制的研究现状,而后从种属差异、时空分布及对微生物的影响等方面对根系ROL在自然基质中的扩散效应国内外研究成果进行了总结,最终根据研究现状与不足对今后的研究方向进行了简要展望。创新之处在于:1)提出影响根系氧供给及氧输送释放通道的环境、生物等因素,阐述了其对根系ROL的影响机制;2)着重阐述了目前研究较少提及的根系ROL扩散效应测定方法。  相似文献   

4.
Lobelia dortmanna leads a group of small, highly-valued rosette species that grow on coarse, nutrient-poor soils in temperate soft-water lakes. They acquire most CO2 for photosynthesis by root uptake and efficient gas transport in large air channels to the leaves. Lobelia is the only species that releases virtually all photosynthetic oxygen from the roots and generates profound day-night changes in oxygen and CO2 in the sediment pore-water. While oxygen release from roots stimulates decomposition and supports VA-mycorrhiza fungi, the ready gas exchange presents a risk of insufficient oxygen supply to the distal root meristems as sediments accumulate organic matter from lake pollution. So the plant with the greatest oxygen release from roots is also the most sensitive to oxygen depletion in sediments and it dies or losses anchorage by shortening the roots from 10 to 2 cm at even modest contents (2.4%) of degradable organic matter. Coatings of oxidized iron on roots in organically enriched sediments reduce radial oxygen loss and, thereby, increase internal concentrations and supply of oxygen to root tips. Oxidized iron is also a redox buffer which may prevent the ingress of sulfides and other reduced toxic solutes during nights. Controlled experiments are under way to test if iron enrichment can help survival of rosette species threatened by lake pollution or whether removal of organic surface sediments is required.Key words: isoetids, Lobelia dortmanna, iron, ROL, sediment oxygen, iron plaques  相似文献   

5.
Growth in stagnant, oxygen‐deficient nutrient solution increased porosity in adventitious roots of two monocotyledonous (Carex acuta and Juncus effusus) and three dicotyledonous species (Caltha palustris, Ranunculus sceleratus and Rumex palustris) wetland species from 10 to 30% under aerated conditions to 20–45%. The spatial patterns of radial oxygen loss (ROL), determined with root‐sleeving oxygen electrodes, indicated a strong constitutive ‘barrier’ to ROL in the basal root zones of the two monocotyledonous species. In contrast, roots of the dicotyledonous species showed no significant ‘barrier’ to ROL when grown in aerated solution, and only a partial ‘barrier’ when grown in stagnant conditions. This partial ‘barrier’ was strongest in C. palustris, so that ROL from basal zones of roots of R. sceleratus and R. palustris was substantial when compared to the monocotyledonous species. ROL from the basal zones would decrease longitudinal diffusion of oxygen to the root apex, and therefore limit the maximum penetration depth of these roots into anaerobic soil. Further studies of a larger number of dicotyledonous wetland species from a range of substrates are required to elucidate the ecophysiological consequences of developing a partial, rather than a strong, ‘barrier’ to ROL.  相似文献   

6.
A Re-examination of the Functional Significance of Aerenchyma   总被引:1,自引:0,他引:1  
Model roots of known length and internal porosity were assayed for ROL (radial oxygen loss) by the cylindrical Pt electrode technique and a series of curves were obtained which express the inter-relationships between ROL and diffusion path length over a wide range of internal porosity levels. The results indicate that internal porosity can exert considerable control on the amount of oxygen lost from roots, the more so the narrower the root. Because radial oxygen loss is necessary for survival and competitiveness, doubt is therefore cast on the currently held view that aerenchyma formation furnishes the wetland plant with an oxygen diffusion pathway excessive to its requirements. The results also suggest that cellular partitions and diaphragms in wetland species may impede gas transport far less than has hitherto been thought.  相似文献   

7.
BACKGROUND AND AIMS: Rain-fed lowland rice commonly encounters stresses from fluctuating water regimes and nutrient deficiency. Roots have to acquire both oxygen and nutrients under adverse conditions while also acclimating to changes in soil-water regime. This study assessed responses of rice roots to low phosphorus supply in aerated and stagnant nutrient solution. METHODS: Rice (Oryza sativa 'Amaroo') was grown in aerated solution with high P (200 micro m) for 14 d, then transferred to high or low (1.6 micro m) P supply in aerated or stagnant solution for up to 8 d. KEY RESULTS: After only 1 d in stagnant conditions, root radial oxygen loss (ROL) had decreased by 90 % in subapical zones, whereas near the tip ROL was maintained. After 4 d in stagnant conditions, maximum root length was 11 % less, and after 8 d, shoot growth was 25 % less, compared with plants in aerated solution. The plants in stagnant solution had up to 19 % more adventitious roots, 24 % greater root porosity and 26 % higher root/shoot ratio. Rice in low P supply had fewer tillers in both stagnant and aerated conditions. After 1-2 d in stagnant solution, relative P uptake declined, especially at low P supply. Aerated roots at low P supply maintained relative P uptake for 4 d, after which uptake decreased to the same levels as in stagnant solution. CONCLUSIONS: Roots responded rapidly to oxygen deficiency with decreased ROL in subapical zones within 1-2 d, indicating induction of a barrier to ROL, and these changes in ROL occurred at least 2 d before any changes in root morphology, porosity or anatomy were evident. Relative P uptake also decreased under oxygen deficiency, showing that a sudden decline in root-zone oxygen adversely affects P nutrition of rice.  相似文献   

8.
Adventitious roots of rice (Oryza sativa) acclimatize to root-zone O(2) deficiency by increasing porosity, and induction of a barrier to radial O(2) loss (ROL) in basal zones, to enhance longitudinal O(2) diffusion towards the root tip. Changes in root-zone gas composition that might induce these acclimatizations, namely low O(2), elevated ethylene, ethylene-low O(2) interactions, and high CO(2), were evaluated in hydroponic experiments. Neither low O(2) (0 or 0.028 mol m(-3) O(2)), ethylene (0.2 or 2.0 microl l(-1)), or combinations of these treatments, induced the barrier to ROL. This lack of induction of the barrier to ROL was despite a positive response of aerenchyma formation to low O(2) and elevated ethylene. Carbon dioxide at 10 kPa had no effect on root porosity, the barrier to ROL, or on growth. Our findings that ethylene does not induce the barrier to ROL in roots of rice, even though it can enhance aerenchyma formation, shows that these two acclimatizations for improved root aeration are differentially regulated.  相似文献   

9.
The objective of this work was to determine whether radial oxygen loss (ROL) from roots of Typha domingensis and Cladium jamaicense creates an internal oxygen deficiency or, conversely, indicates adequate internal aeration and leakage of excess oxygen to the rhizosphere. Methylene blue in agar was used to visualize the pattern of ROL from roots, and oxidation of a titanium-citrate solution was used to quantify rates of oxygen leakage. Typha's roots had a higher porosity than Cladium's and responded to flooding treatment by increasing cortical air space, particularly near the root tips. A greater oxygen release, which occurred along the subapical root axis, and an increase in rhizosphere redox potential (E(h)) over time were associated with the well-developed aerenchyma system in Typha. Typha roots, regardless of oxygen release pattern, showed low or undetectable alcohol dehydrogenase (ADH) activity or ethanol concentrations, indicating that ROL did not cause internal deficiencies. Cladium roots also released oxygen, but this loss primarily occurred at the root tips and was accompanied by increased root ADH activity and ethanol concentrations. These results support the hypothesis that oxygen release by Cladium is accompanied by internal deficiencies of oxygen sufficient to stimulate alcoholic fermentation and helps explain Cladium's lesser flood tolerance in comparison with Typha.  相似文献   

10.
COLMER  T. D. 《Annals of botany》2003,91(2):301-309
The present study evaluated waterlogging tolerance, root porosityand radial O2 loss (ROL) from the adventitious roots, of sevenupland, three paddy, and two deep-water genotypes of rice (Oryzasativa L.). Upland types, with the exception of one genotype,were as tolerant of 30 d soil waterlogging as the paddyand deep-water types. In all but one of the 12 genotypes, thenumber of adventitious roots per stem increased for plants grownin waterlogged, compared with drained, soil. When grown in stagnantdeoxygenated nutrient solution, genotypic variation was evidentfor root porosity and rates of ROL, but there was no overalldifference between plants from the three cultural types. Adventitiousroot porosity increased from 20–26 % for plants grownin aerated solution to 29–41 % for plants grown instagnant solution. Growth in stagnant solution also induceda ‘tight’ barrier to ROL in the basal regions ofadventitious roots of five of the seven upland types, all threepaddy types, and the two deep-water types. The enhanced porosityprovided a low resistance pathway for O2 movement to the roottip, and the barrier to ROL in basal zones would have furtherenhanced longitudinal O2 diffusion towards the apex, by diminishinglosses to the rhizosphere. The plasticity in root physiology,as described above, presumably contributes to the ability ofrice to grow in diverse environments that differ markedly insoil waterlogging, such as drained upland soils as well as waterloggedpaddy fields.  相似文献   

11.
Internal transport of gases is crucial for vascular plants inhabiting aquatic, wetland or flood‐prone environments. Diffusivity of gases in water is approximately 10 000 times slower than in air; thus direct exchange of gases between submerged tissues and the environment is strongly impeded. Aerenchyma provides a low‐resistance internal pathway for gas transport between shoot and root extremities. By this pathway, O2 is supplied to the roots and rhizosphere, while CO2, ethylene, and methane move from the soil to the shoots and atmosphere. Diffusion is the mechanism by which gases move within roots of all plant species, but significant pressurized through‐flow occurs in stems and rhizomes of several emergent and floating‐leaved wetland plants. Through‐flows can raise O2 concentrations in the rhizomes close to ambient levels. In general, rates of flow are determined by plant characteristics such as capacity to generate positive pressures in shoot tissues, and resistance to flow in the aerenchyma, as well as environmental conditions affecting leaf‐to‐air gradients in humidity and temperature. O2 diffusion in roots is influenced by anatomical, morphological and physiological characteristics, and environmental conditions. Roots of many (but not all) wetland species contain large volumes of aerenchyma (e.g. root porosity can reach 55%), while a barrier impermeable to radial O2 loss (ROL) often occurs in basal zones. These traits act synergistically to enhance the amount of O2 diffusing to the root apex and enable the development of an aerobic rhizosphere around the root tip, which enhances root penetration into anaerobic substrates. The barrier to ROL in roots of some species is induced by growth in stagnant conditions, whereas it is constitutive in others. An inducible change in the resistance to O2 across the hypodermis/exodermis is hypothesized to be of adaptive significance to plants inhabiting transiently waterlogged soils. Knowledge on the anatomical basis of the barrier to ROL in various species is scant. Nevertheless, it has been suggested that the barrier may also impede influx of: (i) soil‐derived gases, such as CO2, methane, and ethylene; (ii) potentially toxic substances (e.g. reduced metal ions) often present in waterlogged soils; and (iii) nutrients and water. Lateral roots, that remain permeable to O2, may be the main surface for exchange of substances between the roots and rhizosphere in wetland species. Further work is required to determine whether diversity in structure and function in roots of wetland species can be related to various niche habitats.  相似文献   

12.
13.
Amount of oxygen released by bulrush (Scirpus validus) roots has been quantified based on the radial oxygen loss (ROL) exhibited by the roots, the number and the length of active lateral roots, and the field plant density. It was found that wetland bulrush contains two types of active lateral roots (showing ROL), viz., laterals of brown and white main roots. The two laterals have distinct oxygen release characteristics. Based on the dissolved oxygen (DO) microprofiles of brown and white laterals, the ROLs were found to be approximately 61 ng O2 cm(-2) root surface min(-1) and approximately 68 ng O2 cm(-2) root surface min(-1), respectively, at bulk 5-day biochemical oxygen demand (BOD5) of 76 mg L(-1). The respective average active root lengths of the brown and the white laterals were approximately 40 and approximately 1676 microm. Based on field and laboratory measurements, the average amount of oxygen released by bulrush was found to be 2.30 mg O2 m(-2) wetland surface d(-1); of this approximately 71% is from the white roots. The results of this study indicate that plants do not release enough oxygen to meet the total oxygen demand of bulk wastewater, and therefore, constructed wetlands should be designed as an anaerobic or an aerobic-anaerobic hybrid system rather than as an aerobic system. However, the results of this study should be viewed in the background of possible errors (including a reactor design flaw), which might have made the measured oxygen release significantly lower than what plant roots actually release. Further studies are needed to quantify wetland plant oxygen release based on micro-scale measurements.  相似文献   

14.
A radial oxygen loss (ROL) barrier in roots of waterlogging‐tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging‐tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short‐arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.  相似文献   

15.

Background and Aims

Many wetland species form aerenchyma and a barrier to radial O2 loss (ROL) in roots. These features enhance internal O2 diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

Methods

ROL barrier induction in short and long roots of rice (Oryza sativa L. ‘Nipponbare’) was assessed using cylindrical root-sleeving O2 electrodes and methylene blue indicator dye for O2 leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM).

Key Results

In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin.

Conclusions

As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.  相似文献   

16.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

17.
The adventitious roots of Hordeum marinum grown in stagnant deoxygenated solution contain a barrier to radial O2 loss (ROL) in basal zones, whereas roots of plants grown in aerated solution do not. The present experiments assessed whether induction of the barrier to ROL influences root hydraulic conductivity (Lpr). Wheat (Triticum aestivum) was also studied since, like H. marinum, this species forms aerenchyma in stagnant conditions, but does not form a barrier to ROL. Plants were grown in either aerated or stagnant, deoxygenated nutrient solution for 21-28 d. Root-sleeving O2 electrodes were used to assess patterns of ROL along adventitious roots, and a root-pressure probe and a pressure chamber to measure Lpr for individual adventitious roots and whole root systems, respectively. Lpr, measured under a hydrostatic pressure gradient, was 1.8-fold higher for individual roots, and 5.6-fold higher for whole roots systems, in T. aestivum than H. marinum. However, there was no difference in Lpr between the two species when measured under an osmotic driving force, when water moved from cell to cell rather than apoplastically. Root-zone O2 treatments during growth had no effect on Lpr for either species (measured in aerobic solution). It is concluded that induction of the barrier to ROL in H. marinum did not significantly affect the hydraulic conductivity of either individual adventitious roots or of the whole root system.  相似文献   

18.
Few studies have examined exodermal development in relation to the formation of barriers to both radial oxygen loss (ROL) and solute penetration along growing roots. Here, we report on the structural development, chemical composition and functional properties of the exodermis in two diverse wetland grasses, Glyceria maxima and Phragmites australis. Anatomical features, development, the biochemical composition of exodermal suberin and the penetration of apoplastic tracers and oxygen were examined. Striking interspecific differences in exodermal structure, suberin composition and quantity per unit surface area, and developmental changes along the roots were recorded. Towards the root base, ROL and periodic acid (H(5)IO(6)) penetration were virtually stopped in P. australis; in G. maxima, a tight ROL barrier restricted but did not stop H(5)IO(6) penetration and the exodermis failed to stain with lipidic dyes. Cultivation in stagnant deep hypoxia conditions or oxygenated circulating solution affected the longitudinal pattern of ROL profiles in G. maxima but statistically significant changes in exodermal suberin composition or content were not detected. Interspecific differences in barrier performance were found to be related to hypodermal structure and probably to qualitative as well as quantitative variations in suberin composition and distribution within exodermal cell walls. Implications for root system function are discussed, and it is emphasized that sufficient spatial resolution to identify the effects of developmental changes along roots is crucial for realistic evaluation of exodermal barrier properties.  相似文献   

19.

Background and aims

Wetland plants have been widely used in constructed wetlands for the clean-up of metal-contaminated waters. This study investigated the relationship between rate of radial oxygen loss (ROL), root porosity, Zn uptake and tolerance, Fe plaque formation in wetland plants.

Methods

A hydroponic experiment and a pot trial with Zn-contaminated soil were conducted to apply different Zn level treatments to various emergent wetland plants.

Results

Significant differences were found between plants in their root porosities, rates of ROL, Zn uptake and Zn tolerance indices in the hydroponic experiment, and concentrations of Fe and Mn on roots and in the rhizosphere in the pot trial. There were significant positive correlations between root porosities, ROL rates, Zn tolerance, Zn, Fe and Mn concentrations on roots and in the rhizosphere. Wetland plants with higher root porosities and ROL tended to have more Fe plaque, higher Zn concentrations on roots and in their rhizospheres, and were more tolerant of Zn toxicity.

Conclusions

Our results suggest that ROL and root porosity play very important roles in Fe plaque formation, Zn uptake and tolerance, and are useful criteria for selecting wetland plants for the phytoremediation of Zn-contaminated waters and soils/sediments.  相似文献   

20.
BACKGROUND AND AIMS: Claims that submerged roots of alder and other wetland trees are aerated by pressurized gas flow generated in the stem by a light-induced thermo-osmosis have seemed inconsistent with root anatomy. Our aim was to seek a verification using physical root-stem models, stem segments with or without artificial roots, and rooted saplings. METHODS: Radial O2 loss (ROL) from roots was monitored polarographically as the gas space system of the models, and stems were pressurized artificially. ROL and internal pressurization were also measured when stems were irradiated and the xylem stream was either CO2 enriched or not. Stem photosynthesis and respiration were measured polarographically. Stem and root anatomy were examined by light and fluorescence microscopy. KEY RESULTS: Pressurizing the models and stems to 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号