首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic control of the low response of BSVS mice to streptococcal Group A carbohydrate (GAC) was studied in crosses with responder A/J mice. F1 mice were responders. In the backcross (BSVS × A/J)F1 × BSVS mice, there were equal numbers of anti-GAC responder and nonresponder mice, indicating genetic control by a small number of major loci. The anti-GAC responses of the backcross mice showed no obligate linkage between responder status and A/JH-2 orIgC H alleles. However, it was observed that the average anti-GAC titers were higher in backcross mice heterozygous at these loci. The above data, a lack of low-responder F2 animals, and the segregation of a non-H-2-, non-IgC H -linked locus in the first and second backcross mice, indicate that the defect in the BSVS anti-GAC responsiveness involves three loci: one linked toH-2, another linked toIgC H , and a third locus —tentatively namedIr-GAC- not linked toH-2, IgC H , orHbb.  相似文献   

2.
Fatty liver is strongly associated with the metabolic syndrome characterized by obesity, insulin resistance, and type 2 diabetes, but the genetic basis and functional mechanisms linking fatty liver with the metabolic syndrome are largely unknown. The SMXA-5 mouse is one of the SMXA recombinant inbred substrains established from SM/J and A/J strains and is a model for polygenic type 2 diabetes, characterized by moderately impaired glucose tolerance, hyperinsulinemia, and mild obesity. SMXA-5 mice also developed fatty liver, and a high-fat diet markedly worsened this trait, although SM/J and A/J mice are resistant to fatty liver development under a high-fat diet. To dissect loci for fatty liver in the A/J regions of the SMXA-5 genome, we attempted quantitative trait loci (QTLs) analysis in (SM/JxSMXA-5)F2 intercross mice fed a high-fat diet. We mapped a major QTL for relative liver weight and liver lipid content near D12Mit270 on chromosome 12 and designated this QTL Fl1sa. The A/J allele at this locus contributes to the increase in these traits. We confirmed the effect of Fl1sa on lipid accumulation in liver using the A/J-Chr12(SM) consomic strain, which showed significantly less accumulation than A/J mice. This suggests that the SM/J and A/J strains, neither of which develops fatty liver, possess loci causing fatty liver and that the coexistence of these loci causes fatty liver in SMXA-5 mice.  相似文献   

3.
S R Brunnert  S Shi  B Chang 《Genomics》1999,59(1):105-107
Dystrophic cardiac calcinosis (DCC) occurs in certain inbred strains of mice, including DBA/2 and C3H/He, and is generally found as an incidental lesion in adult animals at necropsy. Preliminary genetic studies into the cause of DCC have been performed in DBA/2 mice and suggest that DCC is inherited as an autosomal recessive trait involving three or four unlinked genes. To investigate the genetics of DCC further, we produced myocardial cell death by freeze-thaw injury to induce DCC. Experiments were conducted with three F1 hybrids made using three inbred strains of mice (DBA/2J and C3H/HeJ, DCC-susceptible strains; C57BL/6J, DCC-resistant strain) to compare the genetic factors in the development of DCC. We found that DBA/2 and C3H/He mice share the same gene pattern(s) that is responsible for DCC. We determined by backcross linkage analysis in DBA/2 and C57BL/6 mice that at least one recessive locus is responsible for DCC. A haplotype analysis of the backcross data demonstrated that the recessive locus, designated dyscalc1, is located on Chromosome 7, 20.5 cM distal to the centromere. The likely candidate genes for dyscalc1 are discussed. Further understanding of the structure and function of these mutant genes will be beneficial in explaining the molecular pathogenesis of DCC.  相似文献   

4.
Ahl2, a second locus affecting age-related hearing loss in mice   总被引:7,自引:0,他引:7  
Johnson KR  Zheng QY 《Genomics》2002,80(5):461-464
Inbred mouse strains with age-related hearing loss (AHL) provide valuable models for studying the genetic basis of human presbycusis. Here we report the genetic mapping of a second AHL locus in mice (designated Ahl2) that is a major contributor to the 8- to 10-month difference in hearing loss onset times between NOD/LtJ and C57BL/6J mice. A whole-genome linkage scan of 110 progeny from a (C57BL/6JxNOD/LtJ)xNOD/LtJ backcross revealed statistically significant associations of ABR thresholds with markers on chromosome 5, with a peak lod score of 5.5 for D5Mit309. At 6 months of age, backcross progeny that inherited two copies of the recessive NOD/LtJ-derived allele at this locus (genotype ahl2/ahl2) exhibited ABR thresholds that were on average 26 decibels above those of heterozygous mice. Analysis of a (CAST/EixNOD/LtJ)xNOD/LtJ backcross, which segregates strain-specific alleles at both Ahl2 and the Ahl locus on chromosome 10, showed that the hearing loss attributable to Ahl2 is dependent on a predisposing Ahl genotype. The statistically significant effect of Ahl2 observed in crosses with NOD/LtJ was not seen in crosses involving three other strains with early onset AHL: A/J, BUB/BnJ, and SKH2/J.  相似文献   

5.
Car-R (carcinogenesis-resistant) and Car-S (carcinogenesis-susceptible) outbred mice, obtained by phenotypic selection from an initial intercross of eight inbred strains, show a >100-fold difference in their susceptibility to two-stage skin tumorigenesis. We found that the lines carry a high degree of genetic polymorphism, with an average heterozygosity of 0.39. This polymorphism allowed the use of linkage disequilibrium (LD) and haplotype analysis for the mapping of a skin cancer modifier locus on Chr 7, in a short region of 6 cM, around the Tyr gene. Car-S mice inherited the susceptibility allele at this locus from the A/J, BALB/c, SJL/J, and SWR/J strains. Our results demonstrate the feasibility and usefulness of mapping disease genes by LD in phenotypically selected, genetically heterogeneous animals. Received: 16 March 2000 / Accepted: 9 June 2000  相似文献   

6.
Wild-derived mice originally obtained from Asia, Africa, North America, and Europe were typed for in vitro sensitivity to ecotropic murine leukemia viruses and for susceptibility to Friend virus-induced disease. Cell cultures established from some wild mouse populations were generally less sensitive to exogenous virus than were cell cultures from laboratory mice. Wild mice also differed from inbred strains in their in vitro sensitivity to the host range subgroups defined by restriction at the Fv-1 locus. None of the wild mice showed the Fv-1n or Fv-1b restriction patterns characteristic of most inbred strains, several mice resembled the few inbred strains carrying Fv-1nr, and most differed from laboratory mice in that they did not restrict either N- or B-tropic murine leukemia viruses. Analysis of genetic crosses of Mus spretus and Mus musculus praetextus demonstrated that the nonrestrictive phenotype is controlled by a novel allele at the Fv-1 locus, designated Fv-10. The wild mice were also tested for sensitivity to Friend virus complex-induced erythroblastosis to type for Fv-2. Only M. spretus was resistant to virus-induced splenomegaly and did not restrict replication of Friend virus helper murine leukemia virus. Genetic studies confirmed that this mouse carries the resistance allele at Fv-2.  相似文献   

7.
Theiler's virus causes a persistent infection with demyelination that is studied as a model for multiple sclerosis. Inbred strains of mice differ in their susceptibility to viral persistence due to both H-2 and non-H-2 genes. A locus with a major effect on persistence has been mapped on chromosome 10, close to the Ifng locus, using a cross between susceptible SJL/J and resistant B10.S mice. We now confirm the existence of this locus using two lines of congenic mice bearing the B10.S Ifng locus on an SJL/J background, and we describe a deletion in the promoter of the Ifng gene of the SJL/J mouse. We studied the expression of IFN-gamma, IL-2, IL-10, and IL-12 in the brains of SJL/J mice, B10.S mice, and the two lines of congenic mice during the first 2 wk following inoculation. We found a greater expression of IFN-gamma and IL-2 mRNA in the brains of B10.S mice compared with those of SJL/J mice. Also, the ratio of IL-12 to IL-10 mRNA levels was higher in B10.S mice. However, the cytokine profiles were the same for the two lines of resistant congenic mice and for susceptible SJL/J mice. Therefore, the difference of Th1/Th2 balance between the B10.S and SJL/J mice is not due to the Ifng locus and does not account for the difference of susceptibility of these mice to persistent infection.  相似文献   

8.
F G Biddle  D A Jones  B A Eales 《Génome》2001,44(5):872-882
Left-right direction of paw usage in the mouse depends on the genotype and the directional nature of the test. There are two phenotypic classes; in some strains, direction of paw usage is learned or conditioned by the direction of the initial test chamber and the experience of reaching and, in other strains, paw usage is a constitutive behaviour not affected by previous experience. We report the evidence for locus heterogeneity in the cause of constitutive versus experience-conditioned paw usage from a phenotypic analysis of F1 hybrid generations from the experience-conditioned C57BL/6J, C3H/HeHa, and SWV strains and the constitutive CDS/Lay and DBA/2J strains. The F1 hybrids between strains of different phenotypic classes provide evidence of locus heterogeneity. Constitutive paw usage in CDS/Lay is phenotypically dominant to experience-conditioned behaviour in both C57BL/6J and SWV. However, constitutive paw usage in DBA/2J is phenotypically recessive to experience-conditioned behaviour in C57BL/6J and dominant to experience-conditioned behaviour in SWV. Among the experience-conditioned strains, C57BL/6J is highly lateralized but SWV is only weakly lateralized. Our data suggest a model in which C57BL/6J may have a "strong" allele that identifies a functional difference between the constitutive paw usage of CDS/Lay and DBA/2J. DBA/2J may have a loss-of-function mutation at the same locus that is recessive to the strong C57BL/6J allele. SWV may have a "weak" allele and the (SWV x D2)F1 compound heterozygote may be below a threshold for detectability of experience-conditioned behaviour, making the constitutive behaviour of DBA/2J appear to be dominant to the experience-conditioned behaviour of SWV. CDS/Lay may have a dominant allele at a second locus that suppresses experience-conditioned behaviour in all F1 hybrids.  相似文献   

9.
Melanocytes produce two chemically distinct types of melanin pigments, eumelanin and pheomelanin. These pigments can be quantitatively analyzed by acidic permanganate oxidation or reductive hydrolysis with hydriodic acid to form pyrrole-2,3,5-tricarboxylic acid or aminohydroxyphenylalanine, respectively. About 30 coat color genes in mice have been cloned, and functions of many of those genes have been elucidated. However, little is known about the interacting functions of these loci. In this study, we used congenic mice to eliminate genetic variability, and analyzed eumelanin and pheomelanin contents of hairs from mice mutant at one or more of the major pigment loci, i.e., the albino (C) locus that encodes tyrosinase, the slaty (Slt) locus that encodes tyrosinase-related protein 2 (TRP2 also known as dopachrome tautomerase, DCT), the brown (B) locus that encodes TRP1, the silver (Si) locus that encodes a melanosomal silver protein, the agouti (A) locus that encodes agouti signaling protein (ASP), the extension (E) locus that encodes melanocortin-1 receptor, and the mahogany (Mg) locus that encodes attractin. We also measured total melanin contents after solubilization of hairs in hot Soluene-350 plus water. Hairs were shaved from 2-3-month-old congenic C57BL/6J mice. The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C). Phenotypes of chinchilla (c(ch)/c(ch)) mice that are wild type or mutant at the brown and/or slaty, loci indicate that functioning TRP2 and TRP1 are necessary, in addition to high levels of tyrosinase, for a full production of eumelanin. The chinchilla allele was found to reduce the amount of pheomelanin in lethal yellow and recessive yellow mice to less than one fifth of that in congenic yellow mice that were wild type at the albino locus. This indicates that reduction in tyrosinase activity affects pheomelanogenesis more profoundly compared with eumelanogenesis. Hairs homozygous for mutation at the slaty locus contain 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-poor melanin, and this chemical phenotype was retained in hairs that were mutant at both the brown locus and the slaty locus. Hair from mice mutant at the brown locus, but not at the slaty locus, do not contain DHICA-poor melanin. This indicates that the proportion of DHICA in eumelanin is determined by TRP2, but not by TRP1. Mutation at the slaty locus (Slt(lt)) was found to have no effect on pheomelanogenesis, supporting a role of TRP2 only in eumelanogenesis. The mutation at silver (si) locus showed an effect similar to brown, a partial suppression of eumelanogenesis. The mutation at mahogany (mg) locus partially suppressed the effect of lethal yellow (Ay) on pheomelanogenesis, supporting a role of mahogany in interfering with agouti signaling. These results show that combination of double mutation study of congenic mice with chemical analysis of melanins is useful in evaluating the interaction of pigment gene functions.  相似文献   

10.
To evaluate if loci responsible for coat color phenotypes contribute to behavioral characteristics, we specified novel gene loci associated with social exploratory behavior and examined the effects of the frequency of each allele at distinct loci on behavioral expression. We used the F2 generation, which arose from the mating of F1 mice obtained by interbreeding DBA/2 and ICR mice. Phenotypic analysis indicated that the agouti and albino loci affect behavioral traits. A genotype-based analysis revealed that novel exploratory activity was suppressed in a manner dependent on the frequency of the dominant wild-type allele at the agouti, but not albino, locus. The allele-dependent suppression was restricted to colored mice and was not seen in albino mice. The present results suggest that the agouti locus contributes to a particular behavioral trait in the presence of a wild-type allele at the albino locus, which encodes a structural gene for tyrosinase.  相似文献   

11.
The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.  相似文献   

12.
The Ity locus affects the net increase in numbers of Salmonella typhimurium in the liver and spleen of infected mice. There has been controversy, however, about whether the effects of this locus are due to differential killing of S. typhimurium or differential growth rates of S. typhimurium in mice. Our studies using S. typhimurium aroA mutants, which do not grow in vivo, demonstrate that growth of the infecting salmonella is necessary for the observation of the Ity phenotype. To examine the effects of the Ity locus on the growth and killing of fully virulent salmonella, we infected Ity-congenic mice i.v. with stationary phase S. typhimurium containing a single copy of the plasmid pHSG422. This plasmid exhibits defective replication at body temperature and is diluted out during salmonella growth in vivo. Thus, the frequency of plasmid-containing salmonella recovered from mice provides a measure of salmonella cell divisions in vivo. Inasmuch as the numbers of plasmid-containing salmonella are only slightly affected by bacterial division, any decline in the numbers of plasmid-containing salmonella is an unbiased measure of killing. By infecting mice with these plasmid-containing salmonella we observed that: 1) during the first four h post infection (during blood clearance of injected salmonella) there is about 3-fold more killing of salmonella in Ityr mice than in Itys mice; 2) from 4 to 44 h postinfection (after blood clearance is completed) there is little if any additional killing in either Itys or Ityr mice; and 3) during the first 48 h postinfection there is about 18-fold more growth of salmonella in Itys mice than in Ityr mice. Thus, the major effect of the Ity locus on resistance to salmonella, is the regulation of growth within a "safe" (relatively nonbactericidal) site in the liver and spleen.  相似文献   

13.
Ohno T  Ishih A  Tanaka S  Nishimura M  Terada M 《Immunogenetics》2002,53(10-11):925-929
Angiostrongylus costaricensis is a nematode found mainly as a rodent parasite. Laboratory mice were experimentally infected with this parasite. It is known that there is great variability in mortality among inbred mouse strains after infection with this nematode. The survival rate at 5 weeks after infection of A/J mice was 90.5%, whereas that of SM/J mice was only 33.3%, with severe anemia and decreased body weight about 3 weeks after infection. To identify host susceptibility genes for infection with this nematode, we undertook chromosomal mapping by a whole-genome scanning approach in (A/JxSM/J)F2 mice. We mapped a host susceptibility locus (here designated Acsns, for Angiostrongylus costaricensis nematode susceptibility locus) to the telomeric portion of Chromosome 19 (peak LOD=4.35). We also identified two loci on Chr 13 and Chr 17 that have epistatic effects on host survival. This is the first report on host susceptibility loci for helminth infection mapped by whole-genome scanning.  相似文献   

14.
A recessive Salmonella Typhimurium susceptibility locus (immunity to Typhimurium (Ity3) was reported previously on distal mouse chromosome 1 using a cross between C57BL/6J and wild-derived MOLF/Ei mice. This quantitative trait locus is located in a genomic region spanning 84 Mb, rich in candidate genes for which a role in host resistance to Salmonella infection is either known or can be envisioned. In this study, we report the evaluation of neutrophil cytosolic factor 2 (Ncf2) as a candidate Salmonella susceptibility gene for Ity3. Ncf2 encodes p67phox, a subunit of the multiprotein enzyme complex NADPH oxidase, known to be responsible for the generation of superoxides. Congenic mice carrying the Ity3 region from MOLF/Ei, B6.MOLF-Ity/Ity3 were more susceptible to infection compared with control mice heterozygous at Ity3, B6.MOLF-Ity/Ity3(MOLF/B6), confirming the existence of a recessive Salmonella susceptibility locus on distal chromosome 1. Spleen Ncf2 expression levels were lower in infected congenic mice homozygous for the MOLF/Ei allele at Ity3 compared with mice heterozygous at Ity3. C57BL/6J and MOLF/Ei Ncf2 sequence comparisons revealed one nonconservative amino acid change (R394Q) in the functional and highly conserved Phox and Bem1 domain of the protein. Functional analysis revealed that the MOLF/Ei allele had reduced PMA- and Salmonella-induced superoxide induction as compared with their wild-type counterparts ex vivo. The R394Q substitution seems to occur on an amino acid involved in electrostatic interactions with p40phox, crucial in its activation. Moreover, a human mutation in the corresponding R395W, resulting in chronic granulatomous disease, is known to lead to reduced superoxide levels. These results support the candidacy of Ncf2 as the gene underlying Ity3.  相似文献   

15.
There is increasing evidence in both plants and animals that epigenetic marks are not always cleared between generations. Incomplete erasure at genes associated with a measurable phenotype results in unusual patterns of inheritance from one generation to the next, termed transgenerational epigenetic inheritance. The Agouti viable yellow (Avy) allele is the best-studied example of this phenomenon in mice. The Avy allele is the result of a retrotransposon insertion upstream of the Agouti gene. Expression at this locus is controlled by the long terminal repeat (LTR) of the retrotransposon, and expression results in a yellow coat and correlates with hypomethylation of the LTR. Isogenic mice display variable expressivity, resulting in mice with a range of coat colours, from yellow through to agouti. Agouti mice have a methylated LTR. The locus displays epigenetic inheritance following maternal but not paternal transmission; yellow mothers produce more yellow offspring than agouti mothers. We have analysed the DNA methylation in mature gametes, zygotes, and blastocysts and found that the paternally and maternally inherited alleles are treated differently. The paternally inherited allele is demethylated rapidly, and the maternal allele is demethylated more slowly, in a manner similar to that of nonimprinted single-copy genes. Interestingly, following maternal transmission of the allele, there is no DNA methylation in the blastocyst, suggesting that DNA methylation is not the inherited mark. We have independent support for this conclusion from studies that do not involve direct analysis of DNA methylation. Haplo-insufficiency for Mel18, a polycomb group protein, introduces epigenetic inheritance at a paternally derived Avy allele, and the pedigrees reveal that this occurs after zygotic genome activation and, therefore, despite the rapid demethylation of the locus.  相似文献   

16.
To identify quantitative trait loci (QTLs) responsible for regulating plasma lipid concentration associated with obesity, linkage analysis was carried out on the 190 F2 progeny of a cross between C57BL/6J female and KK-Ay (Ay allele at the agouti locus congenic) male. In F2 a/a (agouti locus genotype) mice, two QTLs were identified on chromosome 1 and a QTL on chromosome 3 for total-cholesterol. A QTL for HDL-cholesterol was identified on chromosome 1 and a QTL for NEFA on chromosome 9. In F2 Ay/a mice, two QTLs for HDL-cholesterol were found on chromosome 1. Loci for other lipids with suggestive linkage were also identified. In both F2 mice, one QTL on chromosome 1 for total- and HDL-cholesterol was mapped near D1Mit150, in the vicinity of the apolipoprotein A-II (Apoa2) locus. Seven nucleotide substitutions out of 309 nucleotide apolipoprotein A-II cDNA sequences were identified between KK and C57BL/6J. The Ay allele may be an indication of the plasma lipid levels, but its influence was less apparent than in the case of weight control. The loci for lipids were not on identical chromosomes with those previously identified for obesity, suggesting that hyperlipidemia in KK does not coincidentally occur with obesity.  相似文献   

17.
Vitamin D receptor (VDR) polymorphisms are associated with an increased asthma incidence in human populations; however, observations in Vdr knockout mice are unclear. The aim of our study was to determine the influence of the genetic variation in Vdr among inbred strains on lung resistance (i.e., dynamic and airway resistance). In an intercross between the strains C57BL/6J (B6) and KK/HlJ (KK), we identified that a significant QTL for dynamic resistance on Chr X was interacting with a QTL on Chr 15. The Chr 15 QTL peak was located in close proximity to the Vdr locus. We further examined if phenotypes of several inbred strains with varying Vdr genotypes differed. Strains with a B6-like genotype on the Vdr locus had significantly lower airway resistance than strains with a KK-like genotype. Vdr knockout mice were examined for dynamic resistance and showed significantly higher resistance than mice with one (i.e., heterozygous) or both copies (i.e., wild-type) of the Vdr. In comparison to B6, the strain A/J is more resistant but carries the same genotype at the Vdr locus. Dietary vitamin D manipulation in the strain A/J did not rescue the high airway resistance phenotype. Finally, we observed that serum vitamin D does not correlate significantly with lung resistance parameters in a survey of 18 strains. Conclusively, Vdr contributes to the phenotypic variation of lung resistance in inbred mice but other molecules in the Vdr pathway and extended network [i.e., Chr X gene(s)] may contribute as well.  相似文献   

18.
We report a new mutation at the albino locus in SELH/Bc mice. The mutation arose spontaneously in a male mouse that appeared to be a somatic and germ line mosaic for a new albino (c) allele, provisionally named cBc. The mutation is a recessive lethal, causing embryonic death soon after implantation. We have shown that there is no detectable activity of the Mod-2 allele in cis with the mutation and conclude that the mutation is probably a deletion that includes the c locus, the Mod-2 locus, the intervening 2 cM, and at least one locus essential for postimplantation embryonic survival, either proximal to the c locus or distal to the Mod-2 locus. This new mutation is similar to most previously reported spontaneous mutations at the albino locus in that it arose in a somatic and germ line mosaic mutant animal but differs from them in that it is an embryonic lethal when homozygous and is apparently a deletion. SELH/Bc mice appear to have a high mutation rate. This lethal albino mutation that appears to be a postmeiotic deletion should be useful in the search for the mechanism of mutagenesis in SELH/Bc mice. It may also be useful in mapping essential genes in the c-locus region.  相似文献   

19.
Systemic lupus erythematosus (SLE) is inherited as a complex polygenic trait. (New Zealand Black (NZB) x New Zealand White (NZW)) F(1) hybrid mice develop symptoms that remarkably resemble human SLE, but (NZB x PL/J)F(1) hybrids do not develop lupus. Our study was conducted using (NZW x PL/J)F(1) x NZB (BWP) mice to determine the effects of the PL/J and the NZW genome on disease. Forty-five percent of BWP female mice had significant proteinuria and 25% died before 12 mo of age compared with (NZB x NZW)F(1) mice in which >90% developed severe renal disease and died before 12 mo. The analysis of BWP mice revealed a novel locus (chi(2) = 25.0; p < 1 x 10(-6); log of likelihood = 6.6 for mortality) designated Wbw1 on chromosome 2, which apparently plays an important role in the development of the disease. We also observed that both H-2 class II (the u haplotype) and TNF-alpha (TNF(z) allele) appear to contribute to the disease. A suggestive linkage to proteinuria and death was found for an NZW allele (designated Wbw2) telomeric to the H-2 locus. The NZW allele that overlaps with the previously described locus Sle1c at the telomeric part of chromosome 1 was associated with antinuclear autoantibody production in the present study. Furthermore, the previously identified Sle and Lbw susceptibility loci were associated with an increased incidence of disease. Thus, multiple NZW alleles including the Wbw1 allele discovered in this study contribute to disease induction, in conjunction with the NZB genome, and the PL/J genome appears to be protective.  相似文献   

20.
There are two functional insulin genes in the mouse genome. The Ins2 gene is imprinted and expressed monoallelically from the paternal allele in the yolk sac. In the present study we have re-examined the imprinting status of Ins1. We found that Ins1 is not expressed in the yolk sac of several laboratory mouse strains. The asynchrony of replication at the wild type locus was significantly lower than at imprinted loci and was more similar to non-imprinted loci. Finally, we have taken the advantage of the Ins1(neo) allele created by homologous recombination to examine the allelic usage at this locus. We observed that the neo gene inserted at the Ins1 locus was expressed from both the paternally and the maternally transmitted allele. Therefore, the Ins1 gene does not share any of the basic properties of imprinted genes. On the basis of these data, we concluded that Ins1 locus is unlikely to be imprinted in common laboratory mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号