首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis and secretion of very-low-density lipoproteins (VLDL) and high-density lipoproteins (HDL) by cultured normal rat hepatocytes was investigated with particular emphasis on its modification by monensin. This acidic ionophore coordinately inhibited the rates of secretion of the several VLDL apolipoproteins and the VLDL lipids, suggesting an effect late in the process of biosynthesis and secretion, probably at the stage of exiting from the Golgi apparatus. The secretion of immunoreactive albumin into the medium was comparably inhibited, implying that the pathway and mechanisms involved in albumin secretion may be closely similar to those for VLDL synthesis and secretion. Secretion of phospholipids and of apolipoproteins E and A-I in the HDL fraction increased progressively with time over 18 h in control incubations but was strongly inhibited by monensin. During extended incubation with monensin at high concentrations (10 microM), there was a net release to the medium of a number of hepatocyte proteins, including some that comigrated with apolipoprotein A-I and apolipoprotein C, making it appear that monensin increased the secretion of these apolipoproteins. However, using labeled amino acids, it was shown by autoradiography and by immunoprecipitation that secretion of newly-synthesized, radioactive apolipoprotein A-I and apolipoprotein C was actually inhibited by monensin. These results are compatible with the conclusion that HDL synthesis and secretion may occur by mechanisms closely related to those for synthesis and secretion of albumin and VLDL.  相似文献   

2.
D S Neblock  R A Berg 《Biochemistry》1986,25(20):6208-6213
The synthesis and secretion of procollagen in embryonic chick tendon fibroblasts in suspension culture were inhibited with the carboxylic ionophore monensin. The synthesis of procollagen was inhibited by 50% in a 2-h exposure to 0.1 microM monensin and was inhibited by 70% in a 6-h exposure to 0.1 microM monensin. Secretion of procollagen was inhibited by greater than 90% in the 0.1 microM monensin-treated cultures and was totally inhibited by higher doses of the reagent. A cellular pool of collagenase-digestible peptides was demonstrated in the control cells, the level of which was elevated 3-4 times in the monensin-treated cultures. In order to determine whether the secretory and synthesis block caused by monensin inhibited intracellular degradation of newly synthesized collagen, the hydroxy[14C]proline in degraded collagen fragments present in control and monensin-treated cultures was determined and compared to the total hydroxy[14C]proline synthesized in each culture. The intracellular degradation of newly synthesized, pulse-labeled collagen was shown to proceed at rates comparable to those seen in the control cultures. The monensin-treated cells degraded pulse-labeled newly synthesized collagen nearly twice as long as the controls, resulting in an overall increase in the fraction of newly synthesized collagen that was degraded. These findings suggest that force generation in the activated cross-bridge cycle may occur as a result of an actin-attached cross-bridge transition between these two orientations.  相似文献   

3.
The very-low-density-lipoprotein secretion rate of isolated hepatocytes obtained from rats fed a high-fat diet was half that of cells from control animals. In fat-fed rats, the initial cellular uptake of [l-14C]oleate in vitro was decreased by 25%, its esterification to triacylglycerols and phospholipids by 50% and its incorporation into very-low-density-lipoprotein triacylglycerols by 70%. Exogenous oleate was not the main precursor of very-low-density lipoproteins in these animals. Lipogenesis, a minor source of very-low-density lipoproteins with the control diet in our experimental conditions, was inhibited by 84% after fat-feeding. A short-term inhibition of lipogenesis in vitro did not result in a decrease in very-low-density-lipoprotein secretion rate. The results suggest that fat-feeding decreased availability of exogenous as well as endogenous fatty acids for synthesis of very-low-density lipoproteins.  相似文献   

4.
The effects of chloroquine, verapamil and monensin on secretion of very-low-density lipoproteins (VLDLs) were studied in cultured rat hepatocytes. Maximum inhibition of VLDL-triacylglycerol secretion by 50–90% of control was reached at 200 μM chloroquine, 200 μM verapamil and 5 μM monensin, whereas no effect on cellular triacylglycerol synthesis was observed. The inhibition could be seen within 15 min and was reversible after washout of the drugs. Chloroquine and verapamil inhibited both cellular protein synthesis and protein secretion, whereas monesin reduced protein secretion without any effect on protein synthesis. Control experiments with cycloheximide revealed that intact protein synthesis was not necessary for secretion of VLDL-triacylglycerol during 2 h. Electron micrographs of cells treated with chloroquine, verapamil or monensin showed swollen Golgi cisternae containing VLDL-like particles. By morphometry, a more than 2-fold increase in volume fractions and size indices of Golgi complexes and secondary lysosomes was observed, except that monensin had no significant effect on these parameters of secondary lysosomes. These results suggest that the inhibition of VLDL secretion by chloroquine, verapamil and monensin which takes place in the Golgi complex might be due to disruption of trans-membrane proton gradients. An increase in pH of acidic Golgi vesicles may cause swelling and disturb sorting and membrane flow through this organelle.  相似文献   

5.
Using human and rabbit hepatocyte cultures, the effects of khellin and timefurone on lipoprotein metabolism were studied with special reference to the following parameters: i) binding and degradation of 125I-labeled low density lipoproteins (LDL); ii) apoprotein B (apo-B) secretion measured by immunoenzymatic assay, iii) [35S]methionine labeled apo-B and apo-E within the composition of very low density lipoproteins (VLDL); iiii) total cholesterol synthesis and cholesterol secretion within the composition of VLDL. The therapeutic concentrations (0.1-10 micrograms/ml) of the above drugs had no appreciable effect on the binding and degradation of 125I-LDL but inhibited the secretion of apo-B VLDL, leaving the apo-E VLDL unaffected. This was paralleled with inhibition of cholesterol synthesis (by 30-50%) and VLDL secretion. These results suggest that khellin and timefurone mediate the hypolipidemic effect via the reduction of the intracellular synthesis of cholesterol and secretion of apo-B containing VLDL by hepatocytes.  相似文献   

6.
The ability of Zn to modulate key metabolic processes was investigated in a study of gluconeogenesis in isolated hepatocytes from fasted rats. Zn (100 μM) inhibited glucose production from fructose by 41%, sorbitol by 28%; glycerol by 17%, and glyceraldehyde by 26%. Maximum inhibition of gluconeogenesis from fructose occurred at 25 μM Zn. Zn inhibited the rate of lactate production from fructose by 24% but not from sorbitol, glycerol, or glyceraldehyde. Fructose uptake by hepatocytes was not affected by Zn. A positive linear relationship (r=0.994) was obtained between inhibition by Zn of glucose and lactate production, indicating that a common step in both pathways is inhibited by Zn. The effect of Zn on fructokinase, aldolase-B, and triokinase activities was determined on semipurified rat liver enzyme preparations. Zn had no affect on triokinase activity but inhibited the two other enzymes in a dose-dependent manner, with the inhibition of aldolase-B being much greater than of fructokinase for concentrations of Zn between 2.5 and 20 μM. Zn increased the intracellular concentration of fructose-1-P in hepatocytes incubated with fructose, indicating a more potent Zn inhibition of aldolase-B than fructokinase. In addition, hepatocytes treated with Zn had decreased ATP and ADP concentrations, but had normal energy charge, suggesting an effect of Zn on adenine nucleotide degradation or synthesis. The demonstration that Zn inhibits two enzymes in fructose metabolism adds to the growing list of metabolic pathways that are catalyzed by enzymes that are sensitive to Zn.  相似文献   

7.
We have shown that degradation of asialo-orosomucoid (ASOR) in isolated rat hepatocytes occurs by two different intracellular pathways [Clarke, Oka & Weigel (1987) J. Biol. Chem. 262, 17384-17392] mediated by two subpopulations of cell surface galactosyl (Gal) receptors, designated State 1 or State 2 receptors. In the present study, several inhibitors were tested for their effects on ligand degradation by the State 1 or State 2 pathway. Leupeptin, monensin and chloroquine completely inhibited degradation of 125I-labelled ASOR in both pathways. Dose-response studies showed, however, that the State 2 pathway was more sensitive to leupeptin or monensin than the State 1 pathway. No differences were observed with chloroquine. For example, the onset of inhibition in the State 2 and State 1 pathways occurred at about 0.05 and 0.3 microM-leupeptin respectively, a 6-fold difference. At 3.5 microM-monensin, 125I-ASOR degradation in the State 2 pathway was completely blocked, whereas degradation in the State 1 pathway was essentially unaffected. Colchicine was observed to give the largest differential sensitivity between the two pathways. The State 2 degradation pathway was about 30-fold more sensitive to colchicine than the State 1 pathway. Lumicolchicine had no affect. The onset of inhibition of the rate of 125I-ASOR degradation in the State 2 and State 1 pathways occurred at approximately 0.1 and 3.0 microM-colchicine respectively. At very high concentrations (greater than 0.1 mM), the State 1 pathway could be completely inhibited. We conclude that intracellular 125I-ASOR processing or delivery to degradative compartments in both the State 1 and State 2 Gal receptor pathways requires low pH. Ligand delivery to the degradative compartment does not require microtubules in the State 1 pathway, consistent with the very rapid onset of degradation in this pathway. The State 2 degradation pathway does require microtubules.  相似文献   

8.
Monensin, a univalent ionophore, is a carboxylic acid produced by Streptomyces cinnamonensis. It will complex various alkali-metal ions, but most readily binds Na+. Because of interest in the possible role of Na+ in the regulation of insulin secretion, we examined its effects on several aspects of the metabolism of isolated rat islets of Langerhans. The ionophore inhibited glucose-stimulated insulin release in a concentration-dependent manner, completely inhibiting secretion evoked by 20 mM-glucose at concentrations as low as 0.1 microM in static incubations. In perifusion experiments, both phases of insulin release were equally affected. Monensin (0.1 microM) had no significant effect on glucose oxidation as measured by the generation of 14CO2 from [14C]glucose. Monensin increased the rate of 22Na+ efflux from preloaded islets and net 22Na+ uptake over 30 min, in the absence of changes in islet volume or extracellular space. The ionophore increased the Rb+/K+ permeability of islet cells, as shown by its inhibition of 86Rb+ retention and stimulation of 86Rb+ efflux. At 0.1 microM, monensin abolished glucose-stimulated 45Ca2+ uptake by islets during 5 min incubations, and stimulated 45Ca2+ efflux from preloaded islets perifused with Ca2+-free medium, even in the complete absence of extracellular Na+. Studies of the uptake of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione showed that 0.1 microM-monensin increased net intracellular pH from 7.05 to 7.13. 7 Monensin has widespread, complex, effects on the secretory responses and ion handling by the B cells, which are difficult to interpret in terms solely of actions as a Na+ ionophore.  相似文献   

9.
Isolated rat liver parenchymal cells incubated in the presence of monensin exhibited a reduced uptake of 125I-asialofetuin (125I-AF). Binding studies indicated that the effect was due to a rapid reduction in the number of active surface receptors for the asialoglycoprotein. Monensin had no effect on receptor internalization, but apparently interrupted the recycling of receptors back to the cell surface. Monensin also inhibited the degradation of 125I-AF previously bound to the cells; this inhibition was probably not due to a direct effect on intralysosomal proteolysis, as no lysosomal accumulation of undegraded ligand could be demonstrated in subcellular fractionation studies by means of sucrose gradients. It is more likely that monensin inhibits transfer of the labelled ligand from endocytic vesicles to lysosomes, as indicated by the accumulation of radioactivity in the former and by the ability of monensin to prevent the normally observed time-dependent increase in the buoyant density of endocytic vesicles. Whereas the effect of monensin on binding and uptake of asialofetuin was reversible, the effect on asialofetuin degradation could not be reversed.  相似文献   

10.
1. The effect of the Ca2+-channel blocker diltiazem on hepatic apolipoprotein B (apo B) synthesis and secretion was studied in 12-18 h cultures of collagenase-dispersed rat hepatocytes. 2. The presence of diltiazem in the medium decreased apo B secretion by hepatocytes in a concentration-dependent manner. At 25 microM, diltiazem inhibited apo B secretion by approx. 36%, but there was no evidence of intracellular accumulation of apo B. 3. The inhibition of apo B secretion by hepatocytes was significantly correlated with cell-associated diltiazem (r = 0.72, P less than 0.01). 4. The rate of apo B secretion remained linear over 16 h even in the presence of 50 microM-diltiazem. 5. At diltiazem concentrations in the medium which were inhibitory for apo B secretion, [14C]acetate incorporation into cellular lipids and [35S]methionine incorporation into protein were enhanced. 6. Diltiazem inhibited the secretion of the apo B variants with a preferential inhibition of the higher-molecular-mass form of apo B (apo BH) over the lower-molecular-mass form (apo BL) at diltiazem concentrations in the medium greater than 25 microM. 7. Together, these results suggest that Ca2+ may play an important role in the synthesis and secretion of apo B-containing lipoproteins.  相似文献   

11.
First incubating dispersed acini from rat pancreas with monensin, a cation ionophore that can inhibit recycling of receptors, inhibited binding of 125I-cholecystokinin 8 (125I-CCK-8) measured during a second incubation by as much as 50%. A maximal effect of monensin required 90 min of first incubation. Detectable inhibition of binding of 125I-CCK-8 occurred with 300 nM monensin, and inhibition increased progressively with concentrations of monensin up to 25 microM. Pancreatic acini possess two classes of receptors that bind 125I-CCK-8. One class has a high affinity (Kd = 461 pM) and a low capacity for CCK (512 fmol/mg DNA); the other class has a low affinity (Kd = 47 nM) and a high capacity for CCK (18 pmol/mg DNA). First incubating acini with monensin caused an 84% decrease in the number of high affinity CCK receptors with no change in the number of low affinity CCK receptors or the values of Kd for either class of receptors indicating that there is recycling of high affinity CCK receptors but not low affinity CCK receptors. First incubating acini with monensin did not alter CCK-stimulated amylase secretion indicating that in contrast to previous conclusions, occupation of low affinity CCK receptors mediates CCK-stimulated enzyme secretion. Moreover, the biphasic dose-response curve for CCK-stimulated enzyme secretion from monensin-treated acini suggests that pancreatic acini also possess a third, previously unrecognized class of very low affinity CCK receptors.  相似文献   

12.
Batch cultures (pH 6.7) of Streptococcus bovis JB1 were severely inhibited by 1.25 and 5 microM lasalocid and monensin, respectively, even though large amounts of glucose remained in the medium. However, continuous cultures tolerated as much as 10 and 20 microM, respectively, and used virtually all of the glucose. Although continuous cultures grew with high concentrations of ionophore, the yield of bacterial protein decreased approximately 10-fold. When pH was decreased from 6.7 to 5.7, the potency of both ionophores increased, but lasalocid always caused a larger decrease in yield. The increased activity of lasalocid at pH 5.7 could largely be explained by an increased binding of the ionophore to the cell membrane. Because monensin did not show an increased binding at low pH, some other factor (e.g., ion turnover) must have been influencing its activity. There was a linear increase in lasalocid binding as the concentration increased, but monensin binding increased markedly at high concentrations. Based on the observations that (i) S. bovis cells bound significant amounts of ionophore (the ratio of ionophore to cell material was more important than the absolute concentration), (ii) batch cultures responded differently from continuous cultures, and (iii) pH can have a marked effect on ionophore activity, it appears that the term "minimum inhibitory concentration" may not provide an accurate assessment of microbial growth inhibition in vivo.  相似文献   

13.
Summary The effect of monensin on polysaccharide slime secretion by root tips of corn (Zea mays) was studied. Various treatment times and ionophore concentrations were tested: none resulted in inhibition of slime secretion. Because monensin changes the pH of the medium, its effect was also monitored in strongly buffered media and at different pH's. Even in such media, monensin did not inhibit slime secretion. We also measured the effect of the drug after a pulse with [3H]fucose or a pulse followed by a chase. The amount of labeled slimed secreted was not altered by the ionophore. However, 10M monensin affected the development of root tips and drastically reduced their growth. We showed that monensin inhibits the secretion of -amylase by the scutellum of the same plantlet. The importance of the nature of the secretory compound in relation to monensin inhibition of its secretion is discussed.Abbrevations Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sul-fonic acid - Mes 2-(N-morpholino)ethane-sulfonic acid  相似文献   

14.
The effect of the protease inhibitor leupeptin on the intracellular distribution of [14C]-sucrose-asialofetuin in isolated rat hepatocytes was investigated. Leupeptin had no effect on the uptake but reduced the degradation of asialofetuin. Fractionation of hepatocytes by isopycnic centrifugation in sucrose gradients indicated that prolonged treatment with leupeptin inhibited the uptake of asialofetuin into the lysosomes. Therefore, leupeptin inhibits degradation of asialofetuin both by inhibiting intralysosomal proteolysis and transport of endocytosed asialofetuin to the lysosomes.  相似文献   

15.
Endocytosis of formaldehyde-treated serum albumin (f-albumin) in isolated liver sinusoidal endothelial cells was studied. Uptake occurs via the scavenger receptor and was found to be very sensitive to the ionophore monensin. Binding at 4 degrees C of f-albumin was reduced to 50% of control values by preincubation for 2 min with 2 microM monensin. Both uptake and degradation of f-albumin were more sensitive to monensin. No lag-phase in the inhibitory effect on uptake and degradation was detected. A concentration of 0.1 microM monensin reduced uptake of f-albumin by 50%. Degradation of internalized f-albumin was reduced by 50% in the presence of 0.2 microM monensin. Since uptake and degradation of f-albumin were very sensitive to monensin, the effect of introducing the drug during endocytosis of the ligand was tested. All processing of f-albumin stopped instantly upon addition of monensin; hence, there seems to be no step in the endocytic process beyond which monensin is ineffective. The data suggest that the scavenger receptor of liver endothelial cells is internalized and recycled very rapidly.  相似文献   

16.
P Soubigou  M Ali    C Plas 《The Biochemical journal》1987,246(3):567-573
Sequential changes in the numbers of cell-surface receptors induced by a transitory exposure to insulin in cultured 18-day foetal-rat hepatocytes were investigated in the presence of drugs and at a temperature of 22 degrees C, which inhibit cellular insulin degradation. Chloroquine (70 microM) and monensin (3 microM) did not greatly change the initial rate of internalization of cell-surface receptor sites after exposure to 10 nM-insulin, but led to a steady state after 20 min, which represented 40% of the initial binding, compared with 5 min and 60% in the absence of the drug. Moreover, these drugs strongly decreased the proportion of receptor sites recovered at the cell surface after subsequent removal of the hormone. They were ineffective when insulin was not present. The removal of monensin together with the hormone allowed partial restoration of cell-surface receptor sites and degradation of cell-associated insulin to start again at the initial speed, indicating a reversible effect of the drug. During this phase, the drug concentration-dependence for the two effects showed that receptor recycling was restored with concentrations of monensin not as low as for insulin degradation. The effect of vinblastine (50-100 microM) was similar to that of chloroquine and monensin, whereas no modification in the internalization and recovery processes was observed in the presence of bacitracin concentrations (1-3 mM) that inhibit insulin degradation by 70%. A temperature of 22 degrees C did not prevent the receptor internalization, but had a slowing effect on the recycling process, which appeared to vary in experiments where insulin degradation remained inhibited. The present study shows that the process of insulin degradation mediated by receptor endocytosis is not a prerequisite for insulin-receptor recycling in cultured foetal hepatocytes.  相似文献   

17.
Human granulocytes were exposed to different concentrations of the ionophore monensin for 20 min at 37 degrees C. Subsequent exposure to 50 nM of the chemoattractant fMet-Leu-[3H]Phe for up to 30 min at 37 degrees C resulted in a receptor-mediated uptake that was inhibited 80% at a monensin concentration of 30 microM. 50% inhibition was observed at 1-10 microM monensin with no significant change in fMet-Leu-Phe dose dependency. Subcellular fractionation of cells treated with monensin, indicated that the low density UDP-galactosyltransferase activity associated with internalized receptor-fMet-Leu-Phe complexes in untreated cells was absent. The high density galactosyltransferase activity cosedimenting with specific granule markers, however, was unaffected. Monensin also inhibited chemotaxis toward fMet-Leu-Phe as measured by migration of granulocytes through millipore filters and fMet-Leu-Phe induction of polarized morphology. Incubation of cell suspensions with up to 30 microM monensin, both before and during measurement of fMet-Leu-Phe stimulated superoxide production, did not affect the magnitude, kinetics, or transiency of the radical generation. Monensin did, however, shift the dose dependency of superoxide production of fMet-Leu-Phe to higher concentrations. These differential effects of monensin suggest that endocytosis of complexes of the chemoattractant and receptor is not involved in the activation or termination of the fMet-Leu-Phe stimulated superoxide production. They also are consistent with a role for receptor modulation and processing in the chemotactic response.  相似文献   

18.
The binding of asialoglycoproteins to their liver cell receptor results in internalization of the ligand-receptor complex. These complexes rapidly appear in intracellular compartments termed endosomes whose acidification results in ligand-receptor dissociation. Ligand and receptor subsequently segregate: ligand is transported to lysosomes and is degraded while receptor recycles to the cell surface. The proton ionophore monensin prevents acidification of endosomes and reversibly inhibits this acid-dependent dissociation of ligand from receptor. The present study determined the effect of monensin treatment of short-term cultured rat hepatocytes on cell-surface-receptor content, determined both by their binding activity and immunologically, following continuous endocytosis of asialoorosomucoid. Inclusion of 5 microM monensin in the incubation medium reduced the number of immunologically detectable cell-surface receptors by 20% in the absence of ligand. During continuous endocytosis of asialoorosomucoid, inclusion of monensin resulted in a 30-40% reduction of cell-surface receptor detectable either by ligand binding or immunologically. These results suggest that the reduced liver-cell-surface content of receptor in monensin is due to intracellular trapping of ligand-receptor complexes. The reduction of surface receptor during monensin incubation in the absence of ligand suggests that "constitutive recycling" of plasma membrane components also requires intracellular acidification.  相似文献   

19.
The monovalent ionophore, monensin, inhibits secretion of many different proteins from a wide variety of cells. The site of blockage is at the golgi complex. We have exposed chick embryo chondrocytes in suspension culture to monensin, at concentrations ranging from 10(-8) to 10(-6) M. At the higher concentrations, between 10(-7) and 10(-6) M, monensin inhibited secretion of type II procollagen, which accumulated in the chondrocytes. At these concentrations of the ionophore, proteoglycan synthesis was inhibited, as measured by radioactive serine incorporation into core proteins and by radioactive glucosamine or SO4 incorporation into glycosaminoglycans. However, at a monensin concentration of 3 x 10(-8) M, the incorporations of serine and glucosamine were close to normal while SO4 incorporation was at 30% of control values. The ratio of glucosamine to serine in pronase-released glycosaminoglycans from culture media was unaffected by 3 x 10(-8) M monensin but the sulfate to serine ratio decreased to 29% of control values. Examination of the glycosaminoglycans by gel filtration showed a progressive increase in Kav values as sulfation decreased. Undersulfation was demonstrated by radiochromatographic analysis of the digestion products following incubation with chondroitinase ABC. The composite results show that monensin interferes with sulfation of newly synthesized proteoglycans.  相似文献   

20.
Effects of monensin, a carboxylic ionophore, on intracellular transport of albumin were studied in primary cultured rat hepatocytes. The lag time after which newly synthesized albumin first appeared in medium was 10 min in the control cells, while it was prolonged to 40 min in the monensin-treated cells. In addition, this inhibition of secretion by monensin was accompanied by an intracellular accumulation of proalbumin. The results strongly suggest that monensin arrests the intracellular transport of proalbumin before the site where its conversion takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号